Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pharmaceutics ; 16(1)2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-38276510

RESUMO

Cannabidiol (CBD) has multiple therapeutic benefits that need to be maximized by optimizing its bioavailability. Numerous formulations are therefore being developed and their pharmacokinetics need to be studied, requiring analytical methods and data from intravenous administration. As CBD is susceptible to hepatic metabolism, the requirement of any method is to quantify metabolites such as 7-COOH-CBD. We demonstrated that CBD and 7-COOH-CBD could be simultaneously and correctly quantified in piglet plasma by using an UHPLC-MS/MS technique. The validated method allowed for an accurate bioanalysis of an intravenously injected solution consisting of CBD-HPßCD complexes. The experimental pharmacokinetic profile of CBD showed multi-exponential decay characterized by a fast apparent distribution half-life (0.25 h) and an elimination half-life of two hours. The profile of 7-COOH-CBD was not linked with the first-pass metabolism, since 80% of the maximum metabolite concentration was reached at the first sampling time point, without any decrease during the period of study. A two-compartment model was optimal to describe the experimental CBD profile. This model allowed us to calculate macro-micro constants and volumes of distribution (Vss = 3260.35 ± 2286.66 mL) and clearance (1514.5 ± 261.16 mL·h-1), showing that CBD is rapidly distributed to peripheral tissues once injected and slowly released into the bloodstream.

2.
Adv Healthc Mater ; 13(8): e2302712, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37994483

RESUMO

Lipid-based nanocarriers have demonstrated high interest in delivering genetic material, exemplified by the success of Onpattro and COVID-19 vaccines. While PEGylation imparts stealth properties, it hampers cellular uptake and endosomal escape, and may trigger adverse reactions like accelerated blood clearance (ABC) and hypersensitivity reactions (HSR). This work highlights the great potential of amphiphilic poly(N-methyl-N-vinylacetamide) (PNMVA) derivatives as alternatives to lipid-PEG for siRNA delivery. PNMVA compounds with different degrees of polymerization and hydrophobic segments, are synthesized. Among them, DSPE (1,2-distearoyl-sn-glycero-3-phosphoethanolamine)-PNMVA efficiently integrates into lipoplexes and LNP membranes and prevents protein corona formation around these lipid carriers, exhibiting stealth properties comparable to DSPE-PEG. However, unlike DSPE-PEG, DSPE-PNMVA24 shows no adverse impact on lipoplexes cell uptake and endosomal escape. In in vivo study with mice, DSPE-PNMVA24 lipoplexes demonstrate no liver accumulation, indicating good stealth properties, extended circulation time after a second dose, reduced immunological reaction, and no systemic pro-inflammatory response. Safety of DSPE-PNMVA24 is confirmed at the cellular level and in animal models of zebrafish and mice. Overall, DSPE-PNMVA is an advantageous substitute to DSPE-PEG for siRNA delivery, offering comparable stealth and toxicity properties while improving efficacy of the lipid-based carriers by minimizing the dilemma effect and reducing immunological reactions, meaning no ABC or HSR effects.


Assuntos
Lipossomos , Polietilenoglicóis , Polivinil , Camundongos , Humanos , Animais , Lipossomos/química , Polietilenoglicóis/química , Vacinas contra COVID-19 , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , RNA Interferente Pequeno/genética , Fosfatidiletanolaminas/química
3.
Eur J Pharm Biopharm ; 191: 26-35, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37595762

RESUMO

Particle engineering technologies have led to the commercialization of new inhaled powders like PulmoSolTM or PulmoSphereTM. Such platforms are produced by spray drying, a well-known process popular for its versatility, thanks to wide-ranging working parameters. Whereas these powders contain a high drug-loading, we have studied a low-dose case, in optimizing the production of powders with two anti-asthmatic drugs, budesonide and formoterol. Using a Design of Experiments approach, 27 powders were produced, with varying excipient mixes (cyclodextrins, raffinose and maltodextrins), solution concentrations, and spray drying parameters in order to maximize deep lung deposition, measured through fine particle fraction (next generation impactor). Based on statistical analysis, two powders made of hydropropyl-ß-cyclodextrin alone or mixed with raffinose and L-leucine were selected. Indeed, the two powders demonstrated very high fine particle fraction (>55%), considerably better than commercially available products. Deep lung deposition has been correlated to very fine particle size and lower microparticles interactions shown by laser diffraction assays at different working pressures, and particle morphometry. Moreover, the two drugs would be predicted to deposit homogeneously into the lung according to impaction studies. Uniform delivery is fundamental to control symptoms of asthma. In this study, we develop carrier-free inhalation powders promoting very efficient lung deposition and demonstrate the high impact of inter-particular interactions intensity on their aerosolization behaviour.


Assuntos
Budesonida , Aerossóis e Gotículas Respiratórios , Pós , Rafinose , Administração por Inalação , Tamanho da Partícula , Inaladores de Pó Seco , Aerossóis
4.
J Control Release ; 361: 87-101, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37482343

RESUMO

The recent approval of Onpattro® and COVID-19 vaccines has highlighted the value of lipid nanoparticles (LNPs) for the delivery of genetic material. If it is known that PEGylation is crucial to confer stealth properties to LNPs, it is also known that PEGylation is responsible for the decrease of the cellular uptake and endosomal escape and for the production of anti-PEG antibodies inducing accelerated blood clearance (ABC) and hypersensitivity reactions. Today, the development of PEG alternatives is crucial. Poly(N-vinyl pyrrolidone) (PNVP) has shown promising results for liposome decoration but has never been tested for the delivery of nucleic acids. Our aim is to develop a series of amphiphilic PNVP compounds to replace lipids-PEG for the post-insertion of lipoplexes dedicated to siRNA delivery. PNVP compounds with different degrees of polymerization and hydrophobic segments, such as octadecyl, dioctadecyl and 1,2-distearoyl-sn-glycero-3-phosphoethanolamine (DSPE), were generated. Based on the physicochemical properties and the efficiency to reduce protein corona formation, we showed that the DSPE segment is essential for the integration into the lipoplexes. Lipoplexes post-grafted with 15% DSPE-PNVP30 resulted in gene silencing efficiency close to that of lipoplexes grafted with 15% DSPE-PEG. Finally, an in vivo study in mice confirmed the stealth properties of DSPE-PNVP30 lipoplexes as well as a lower immune response ABC effect compared to DSPE-PEG lipoplexes. Furthermore, we showed a lower immune response after the second injection with DSPE-PNVP30 lipoplexes compared to DSPE-PEG lipoplexes. All these observations suggest that DSPE-PNVP30 appears to be a promising alternative to PEG, with no toxicity, good stealth properties and lower immunological response.


Assuntos
COVID-19 , Polietilenoglicóis , Camundongos , Humanos , Animais , Polietilenoglicóis/química , Vacinas contra COVID-19 , Lipossomos/química , RNA Interferente Pequeno , Inativação Gênica
5.
Int J Pharm ; 642: 123131, 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37321464

RESUMO

Hydrocortisone is mainly used in the substitution treatment of adrenal insufficiency which results in a dysregulation of cortisol. Compounding of hydrocortisone capsules remains the only low-dose oral treatment suitable for the pediatric population. However, capsules often show non-compliance in mass and content uniformity. Three-dimensional printing offers the prospect of practising personalized medicine for vulnerable patients like children. The goal of this work is to develop low-dose solid oral forms containing hydrocortisone by hot-melt extrusion coupled with fused deposition modeling for the pediatric population. Formulation, design and processes temperatures were optimized to produce printed forms with the desired characteristics. Red mini-waffle shapes containing drug loads of 2, 5 and 8 mg were successfully printed. This new 3D design allow to release more than 80 % of the drug in 45 min indicating a conventional release like the one obtained with capsules. Mass and content uniformity, hardness and friability tests complied with European Pharmacopeia specifications, despite the considerable challenge of the small dimensions of the forms. This study demonstrates that FDM can be used to produce innovative pediatric-friendly printed shapes of an advanced pharmaceutical quality to practice personalize medicine.


Assuntos
Hidrocortisona , Medicina de Precisão , Humanos , Criança , Cápsulas , Liberação Controlada de Fármacos , Impressão Tridimensional , Tecnologia Farmacêutica/métodos , Comprimidos
6.
Int J Pharm ; 641: 123088, 2023 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-37257795

RESUMO

Ellagic acid is one of the most studied polyphenolic compounds due to its numerous promising therapeutic properties. However, this therapeutic potential remains difficult to exploit owing to its low solubility and low permeability, resulting in low oral bioavailability. In order to allow an effective therapeutic application of EA, it is therefore necessary to develop strategies that sufficiently enhance its solubility, dissolution rate and bioavailability. For this purpose, solid dispersions based on pre-selected polymers such as Eudragit® EPO, Soluplus® and Kollidon® VA 64, with 5% w/w ellagic acid loading were prepared by hot extrusion and characterized by X-ray diffraction, FTIR spectroscopy and in vitro dissolution tests in order to select the most suitable polymer for future investigations. The results showed that Eudragit® EPO was the most promising polymer for ellagic acid solid dispersions development because its extrudates allowed to obtain a solution supersaturated in ellagic acid that was stable for at least 90 min. Moreover, the resulting apparent solubility was 20 times higher than the actual solubility of ellagic acid. The extrudates also showed a high dissolution rate of ellagic acid (96.25% in 15 min), compared to the corresponding physical mixture (6.52% in 15 min) or the pure drug (1.56% in 15 min). Furthermore, increasing the loading rate of ellagic acid up to 12% in extrudates based on this polymer did not negatively influence its release profile through dissolution tests.


Assuntos
Ácido Elágico , Polímeros , Polímeros/química , Química Farmacêutica/métodos , Ácidos Polimetacrílicos/química , Solubilidade , Composição de Medicamentos/métodos , Temperatura Alta , Portadores de Fármacos/química
7.
Pharmaceutics ; 15(2)2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36839919

RESUMO

Polyethylene glycol (PEG) is used in Lipid Nanoparticles (LNPs) formulations to confer stealth properties and is traditionally anchored in membranes by a lipid moiety whose length significantly impacts the LNPs fate in vivo. C18 acyl chains are efficiently anchored in the membrane, while shorter C14 lipids are quickly desorbed and replaced by a protein corona responsible for the completely different fate of LNPs. In this context, a method to predict the biological behavior of LNPs depending on the lipid-PEG dissociation was developed using the Nanoparticle Tracking Analysis (NTA) method in serum. Two formulations of siRNA-containing LNPs were prepared including CSL3 or SM-102 lipids and were grafted with different lipids-PEG (C18, C14 lipids-PEG, and Ceramide-PEG). The impact of the lipid-PEG on the interactions between LNPs and serum components was demonstrated by monitoring the mean particle size and the concentration over time. In vitro, these formulations demonstrated low toxicity and efficient gene knockdown on tumor MDA-MB-231 cells, but serum was found to significantly impact the efficiency of C18-PEG-based LNPs, while it did not impact the efficiency of C14-PEG-based LNPs. The NTA method demonstrated the ability to discriminate between the behaviors of LNPs according to serum proteins' interactions. CSL3 lipid and Cer-PEG were confirmed to have promise for LNP formulation.

8.
Int J Pharm ; 633: 122639, 2023 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-36693485

RESUMO

The aims of this study were, firstly, to select an optimal lipid solid dispersion of cannabidiol among different lipid excipients (Gelucire® 50/13, 48/16, 44/14 and Labrasol®) and inorganic carriers (colloidal silica, Syloid® XDP and Neusilin® US2) through a screening plan. The enhancement of aqueous solubility of cannabidiol from a free-flowing powder with adequate drug content was obtained by mixing cannabidiol (20%) with Gelucire® 50/13 (40%; Gattefossé, France), both incorporated inside mesopores of mesoporous silica Syloid® XDP (40%; Grace, Germany). Secondly, we have studied the tableting properties of this selected dispersion through a Design of Experiments (DoE) by manufacturing tablets with other excipients with using a compression simulator (Styl'One® Evo, Medelpharm, France). The design of experiments included the percentage of lipid solid dispersion, of glidant, of lubricant and different compression forces. The dissolution efficiency, the drug content, the tensile strength and the ejection force were analyzed. The DoE showed that % of dispersion as well as compression forces were the main influential variables. An exit of lipid materials outside the mesopores of silica due to compression process has been highlighted, reflected by reduced tensile strength. This study showed the possibility of manufacturing tablets with lipid materials even if limitations have been highlighted. Indeed, the dispersion percentage must not exceed 27% and compression forces up to 13 kN are required to produce lipid tablets with optimal properties.


Assuntos
Canabidiol , Excipientes , Solubilidade , Dióxido de Silício , Lipídeos , Comprimidos , Composição de Medicamentos , Resistência à Tração
9.
Int J Pharm ; 626: 122157, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-36055443

RESUMO

Many active principles belong to the second class of the Biopharmaceutics Classification System due to their low aqueous solubility. Elaboration of new solid oral forms by hot-melt extrusion and fused deposition modeling appears as a promising tool to increase the dissolution rate of these drugs. Indeed, hot-melt extrusion allows the amorphisation of drugs and forms with complex geometries are built by 3D printing. Therefore, the goal of this work is to enhance the dissolution rate of poorly soluble drugs using hot-melt extrusion coupled with fused deposition modeling. Four formulations containing Affinisol® 15LV, Kollidon® VA64 and a challenging amount of itraconazole (25 % (wt.)) were successfully printed into forms of 20, 50 and 80 % infill densities. Differential scanning calorimetry analysis has shown that itraconazole remained amorphous during 52 weeks. The drug release rate was highly improved compared to itraconazole in a crystalline form. The dissolution rate was influenced by the infill density and the polymer composition of printed forms which could modify respectively the surface to volume ratio and the distribution of the components in the printed forms. One formulation printed with 20 % infill density even had a solubility profile similar to that of Sporanox®, the commercialized drug product in Belgium.


Assuntos
Itraconazol , Povidona , Composição de Medicamentos/métodos , Liberação Controlada de Fármacos , Itraconazol/química , Polímeros/química , Povidona/química , Impressão Tridimensional , Solubilidade
10.
Int J Pharm ; 625: 122111, 2022 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-35973590

RESUMO

Silicones, more specifically those of the polydimethylsiloxane type, have been widely used in the pharmaceutical industry for decades, particularly in topical applications. In the dermatological field, in addition to provide undeniable textural and sensory benefits, they can play important functions in the physicochemical properties, stability and biopharmaceutical behavior of these formulations. However, despite the notable advances that can be attributed to the family of silicones, the reputation of these compounds is quite bad. Indeed, silicones, even if they derive from sand, are synthetic compounds. Moreover, they are not biodegradable. They flow into our wastewater and oceans, accumulating in the fauna and flora. This obviously raises many concerns in the common imagination. Do silicones represent a danger for our environment? Should the human species worry about long term toxic effects? Are the claimed benefits really that important? After exploring the various applications of silicone excipients in topical dermatological formulations with a special focus on recent advances which open breathtaking prospects for dermatological applications, this paper shed light on the specific challenges involved in preparation of silicone-based drug as well as, the in vivo behavior of these polymers, the toxicological and environmental risks associated with their application.


Assuntos
Química Farmacêutica , Silicones , Portadores de Fármacos/química , Composição de Medicamentos , Excipientes/química , Humanos , Silicones/química
11.
Int J Pharm ; 613: 121319, 2022 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-34875354

RESUMO

Pulmonary drug administration has long been used for local or systemic treatment due to several advantages. Dry powder inhalers emerge as the most promising due to efficiency, ecologic, and drug stability concerns. Coarse lactose-carrier is still the gold standard when inhalation powders are developed. Despite some efforts to produce new types of powders, the lung drug deposition is still poorly controlled, which will ultimately impact therapeutic effectiveness. In this study, we developed "engineered-inhalation powders" using the spray-drying technique. Multiple carbohydrates excipients were binary mixed and combined with two active pharmaceutical ingredients for asthma therapy (budesonide and formoterol). Particle morphology, from spherical to deflated shapes, was characterized by the number and the depth of dimples measured from SEM images. We define a new characteristic deflation ratio ξ as the product between the number of dimples and their depth. Six different powders having opposite morphologies have been selected and we have demonstrated a linear correlation between the fine particle fraction and the deflation ratio of produced powders. Overall, we showed first that the morphology of inhalable powder can be finely tuned by spray-drying technique when excipients varied. Secondly, we developed stable inhalation powders that simultaneously induced high fine particle fractions (>40%) for two drugs due to their deflated surface. The stability has been evaluated for up to 2 months at room temperature.


Assuntos
Excipientes , Lactose , Aerossóis , Tamanho da Partícula , Pós
12.
Int J Pharm ; 605: 120851, 2021 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-34217823

RESUMO

Over the past two decades, RNA interference has become an extensively studied mechanism to silence gene and treat diseases including cancer. siRNA appears as a promising strategy that could avoid some side effects related to traditional chemotherapy. Considering the weak stability of naked siRNA in blood, vectors like cationic liposomes or Lipid Nanoparticles (LNPs) are widely used to carry and protect siRNA until it reaches the tumor targeted. Despite extensive research, only three RNAi drugs are currently approved by the Food and Drug Administration, including only one LNP formulation of siRNA to treat hereditary ATTR amyloidosis. This shows the difficulty of lipoplexes clinical translation, in particular in cancer therapy. To overcome the lipoplexes limitations, searches are made on innovative lipoplexes formulations with enhanced siRNA efficacy. The present review is focusing on the recent use of pH-sensitive lipids, peptides and cell-penetrating peptides or polymers. The incorporation of some of these components in the lipoplex formulation induces a fusogenic property or an enhanced endosomal escape, an enhanced cellular uptake, an enhanced tumor targeting, an improved stability in the blood stream …These innovations appear critical to obtain an efficient siRNA accumulation in tumor cells with effective antitumor effect considering the complex tumor environment.


Assuntos
Nanopartículas , Neoplasias , Humanos , Lipídeos , Lipossomos , Neoplasias/tratamento farmacológico , Interferência de RNA , RNA Interferente Pequeno
13.
Eur J Pharm Biopharm ; 167: 140-158, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34311093

RESUMO

The past decades witnessed an increasing interest in peptides as clinical therapeutics. Rightfully considered as a potential alternative for small molecule therapy, these remarkable pharmaceuticals can be structurally fine-tuned to impact properties such as high target affinity, selectivity, low immunogenicity along with satisfactory tissue penetration. Although physicochemical and pharmacokinetic challenges have mitigated, to some extent, the clinical applications of therapeutic peptides, their potential impact on modern healthcare remains encouraging. According to recent reports, there are more than 400 peptides under clinical trials and 60 were already approved for clinical use. As the demand for efficient and safer therapy became high, especially for cancers, peptides have shown some exciting developments not only due to their potent antiproliferative action but also when used as adjuvant therapies, either to decrease side effects with tumor-targeted therapy or to enhance the activity of anticancer drugs via transbarrier delivery. The first part of the present review gives an insight into challenges related to peptide product development. Both molecular and formulation approaches intended to optimize peptide's pharmaceutical properties are covered, and some of their current issues are highlighted. The second part offers a comprehensive overview of the emerging applications of therapeutic peptides in chemotherapy from bioconjugates to nanovectorized therapeutics.


Assuntos
Antineoplásicos/administração & dosagem , Sistemas de Liberação de Medicamentos , Peptídeos/administração & dosagem , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Humanos , Nanopartículas , Neoplasias/tratamento farmacológico , Peptídeos/química , Peptídeos/farmacologia
14.
Adv Drug Deliv Rev ; 175: 113810, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34029646

RESUMO

In recent years, fused deposition modeling has become one of the most used three-dimensional printing technologies in the pharmaceutical field. The production of personalized dosage forms for individualized therapy and the modification of the drug release profile by the elaboration of complex geometries make fused deposition modeling a promising tool for small-scale production. However, fused deposition modeling has a considerable number of challenges to overcome. They are divided into three categories of parameters. Material-specific parameters encompass the physicochemical properties of the filament, like thermal, mechanical and rheological properties. They determine the feasibility of the printing process. Operation-specific parameters relate to the processing conditions of printing, such as printing temperature and infill density, which have an influence on the final quality and on the dissolution behavior of the objects. The printer equipment is defined by the machine-specific parameters. Some modifications of this equipment also enhance the performance of the printing process. The aim of this review is to highlight the major fused deposition modeling critical process parameters in the pharmaceutical field and possible solutions in order to speed up the development of objects in the pharmaceutical market.


Assuntos
Composição de Medicamentos/métodos , Impressão Tridimensional , Humanos , Tecnologia Farmacêutica/métodos
15.
Int J Pharm ; 597: 120271, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33548365

RESUMO

Liposomes are targeted drug delivery systems that are of great pharmaceutical and therapeutic interest. Parenteral route is the main way used for liposome administration. In this case, their sterility is a requirement. However, due to the particular sensitivity of liposomes and their tendency to physicochemical alterations, their sterilization remains a real challenge. Conventional sterilization methods such as heat, ethylene oxide, ultraviolet and gamma irradiations are considered as unsuitable for liposome sterilization and the recommended methods for obtaining sterility of liposomes are filtration and aseptic manufacturing. Unfortunately, these recommended methods are not without limitations. This review outlines the difficulties associated with the use of these different classical methods for obtaining liposome sterility. The effects on liposome physicochemical and biopharmaceutical characteristics as well as efficacy, toxicity and practical problems of these sterilization techniques have been discussed. The search for an alternative method being therefore necessary, the applicability of supercritical carbon dioxide (ScCO2) technology, which is nowadays a promising strategy for the sterilization of sensitive products such as liposomes, is also examined. It appears from this analysis that ScCO2 could effectively be an interesting alternative to achieve sterility of liposomes, but for this, sterilization assays including challenge tests and optimization studies are needed.


Assuntos
Lipossomos , Esterilização , Sistemas de Liberação de Medicamentos , Filtração
16.
Eur J Pharm Biopharm ; 159: 198-210, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33197529

RESUMO

Ellagic acid (EA) is a polyphenolic active compound with antimalarial and other promising therapeutic activities. However, its solubility and its permeability are both low (BCS IV). These properties greatly compromise its oral bioavailability and clinical utilizations. To overcome these limitations of the physicochemical parameters, several formulation approaches, including particle size reduction, amorphization and lipid-based formulations, have been used. Although these strategies have not yet led to a clinical application, some of them have resulted in significant improvements in the solubility and bioavailability of EA. This critical review reports and analyses the different formulation approaches used by scientists to improve both the biopharmaceutical properties and the clinical use of EA.


Assuntos
Antimaláricos/farmacocinética , Composição de Medicamentos/métodos , Ácido Elágico/farmacocinética , Excipientes/química , Administração Oral , Animais , Antimaláricos/administração & dosagem , Antimaláricos/química , Disponibilidade Biológica , Química Farmacêutica , Avaliação Pré-Clínica de Medicamentos , Ácido Elágico/administração & dosagem , Ácido Elágico/química , Voluntários Saudáveis , Humanos , Lipídeos/química , Modelos Animais , Tamanho da Partícula , Solubilidade , Água/química
17.
Int J Pharm ; 589: 119812, 2020 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-32882367

RESUMO

Poor aqueous solubility of terpenophenolic compound Cannabidiol (CBD) is a major issue in the widespread use of this promising therapeutic polyphenol. Moreover, choosing the appropriate strategy to overcome this challenge is time-consuming and based on trial-error processes. The amorphous form of CBD provided higher aqueous solubility as well as faster dissolution rate in comparison with crystalline CBD. Nevertheless, amorphous forms of CBD tend to recrystallize. The aim of this study was to use three different strategies based on the stabilization of the amorphous form. Cyclodextrins (CH3αCD, HPßCD and HPγCD.), mesoporous silicas (Silsol® and Syloid® AL-1FP) and water soluble polymers (Kollidon® VA64, Kollidon® 12PF and Soluplus®) were processed by using the following techniques: freeze-drying, spray-drying, subcritical carbon dioxide impregnation or hot-melt extrusion. All the obtained formulations provided complete amorphous CBD, although the drug loading depend highly of the excipients. CBD-cyclodextrin formulations, processed by freeze-drying or spray-drying, and CBD-mesoporous silica formulations, processed by subcritical CO2 or by atmospheric impregnation, provided significant increase of aqueous solubility. While the use of Kollidon® 12PF did not provided significant increased solubility within 90 min, Kollidon® VA64 has been highlighted as the excipient that exhibits the highest increase of aqueous solubility of this study. Finally, all formulations, excepted CBD-ALFP formulations, showed adequate stability within at least two months.


Assuntos
Canabidiol , Polímeros , Composição de Medicamentos , Solubilidade , Água
18.
Int J Nanomedicine ; 15: 3649-3667, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32547020

RESUMO

INTRODUCTION: The polyphenolic spice and food coloring ingredient curcumin has beneficial effects in a broad variety of inflammatory diseases. Amongst them, curcumin has been shown to attenuate microglia reaction and prevent from glial scar formation in spinal cord and brain injuries. METHODS: We developed a protocol for the efficient encapsulation of curcumin as a model for anti-inflammatory drugs yielding long-term stable, non-toxic liposomes with favorable physicochemical properties. Subsequently, we evaluate the effects of liposomal curcumin in experimental models for neuroinflammation and reactive astrogliosis. RESULTS: We could show that liposomal curcumin can efficiently reduce the reactivity of human microglia and astrocytes and preserve tissue integrity of murine organotypic cortex slices. DISCUSSION AND PERSPECTIVE: In perspective, we want to administer this curcumin formulation in brain implant coatings to prevent neuroinflammation and glial scar formation as foreign body responses of the brain towards implanted materials.


Assuntos
Encéfalo/patologia , Curcumina/uso terapêutico , Gliose/tratamento farmacológico , Inflamação/tratamento farmacológico , Neuroglia/patologia , Animais , Anti-Inflamatórios/farmacologia , Astrócitos/efeitos dos fármacos , Astrócitos/ultraestrutura , Encéfalo/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Curcumina/farmacologia , Humanos , Inflamação/patologia , Lipopolissacarídeos/farmacologia , Lipossomos , Camundongos , Microglia/efeitos dos fármacos , Microglia/ultraestrutura , Neuroglia/efeitos dos fármacos
19.
Int J Pharm ; 580: 119200, 2020 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-32156531

RESUMO

Poor aqueous solubility of active pharmaceutical ingredients (API) is nowadays a major issue in the pharmaceutical field. The combinatorial chemistry provides more and more API with a great therapeutic potential, but with a low aqueous solubility. Among the strategies to overcome this drawback, the use of amorphous solid dispersions (ASD), as well as the increase of surface area, is widely used. The three dimensional (3D) printing technologies appear to be innovative tools allowing the construction of any unconventional forms with different composition, structure or infill; especially by using ASD materials. This review aims to deliver notions about the different 3D printing techniques found in the literature to improve aqueous solubility of several API, namely nozzle-based method, inkjet methods and laser- based methods, as well as guide formulator in terms of formulation parameters that have to be optimized to allow the most suitable impression of innovative medicines.


Assuntos
Química Farmacêutica/métodos , Preparações Farmacêuticas/metabolismo , Impressão Tridimensional , Tecnologia Farmacêutica/métodos , Água/metabolismo , Disponibilidade Biológica , Química Farmacêutica/instrumentação , Preparações Farmacêuticas/síntese química , Solubilidade , Tecnologia Farmacêutica/instrumentação , Água/química
20.
Pharmaceutics ; 12(1)2020 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-31936628

RESUMO

Although dry powder inhalers (DPIs) have attracted great interest compared to nebulizers and metered-dose inhalers (MDIs), drug deposition in the deep lung is still insufficient to enhance therapeutic activity. Indeed, it is estimated that only 10%-15% of the drug reaches the deep lung while 20% of the drug is lost in the oropharyngeal sphere and 65% is not released from the carrier. The potentiality of the powders to disperse in the air during the patient's inhalation, the aerosolization, should be optimized. To do so, new strategies, in addition to classical lactose-carrier, have emerged. The lung deposition of carrier-free particles, mainly produced by spray drying, is higher due to non-interparticulate forces between the carrier and drug, as well as better powder uniformity and aerosolization. Moreover, the association of two or three active ingredients within the same powder seems easier. This review is focused on a new type of carrier-free particles which are characterized by a sugar-based core encompassed by a corrugated shell layer produced by spray drying. All excipients used to produce such particles are dissected and their physico-chemical properties (Péclet number, glass transition temperature) are put in relation with the lung deposition ability of powders. The importance of spray-drying parameters on powders' properties and behaviors is also evaluated. Special attention is given to the relation between the morphology (characterized by a corrugated surface) and lung deposition performance. The understanding of the closed relation between particle material composition and spray-drying process parameters, impacting the final powder properties, could help in the development of promising DPI systems suitable for local or systemic drug delivery.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...