Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Microbiol ; 21(1): 63, 2021 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-33627070

RESUMO

BACKGROUND: The insect pathogenic bacterium Photorhabdus luminescens exists in two phenotypically different forms, designated as primary (1°) and secondary (2°) cells. Upon yet unknown environmental stimuli up to 50% of the 1° cells convert to 2° cells. Among others, one important difference between the phenotypic forms is that 2° cells are unable to live in symbiosis with their partner nematodes, and therefore are not able to re-associate with them. As 100% switching of 1° to 2° cells of the population would lead to a break-down of the bacteria's life cycle the switching process must be tightly controlled. However, the regulation mechanism of phenotypic switching is still puzzling. RESULTS: Here we describe two novel XRE family transcriptional regulators, XreR1 and XreR2, that play a major role in the phenotypic switching process of P. luminescens. Deletion of xreR1 in 1° or xreR2 in 2° cells as well as insertion of extra copies of xreR1 into 2° or xreR2 into 1° cells, respectively, induced the opposite phenotype in either 1° or 2° cells. Furthermore, both regulators specifically bind to different promoter regions putatively fulfilling a positive autoregulation. We found initial evidence that XreR1 and XreR2 constitute an epigenetic switch, whereby XreR1 represses xreR2 expression and XreR2 self-reinforces its own gene by binding to XreR1. CONCLUSION: Regulation of gene expression by the two novel XRE-type regulators XreR1 and XreR2 as well as their interplay represents a major regulatory process in phenotypic switching of P. luminescens. A fine-tuning balance between both regulators might therefore define the fate of single cells to convert from the 1° to the 2° phenotype.


Assuntos
Regulação da Expressão Gênica/genética , Fenótipo , Photorhabdus/genética , Fatores de Transcrição/genética , Animais , Proteínas de Bactérias/genética , Insetos/microbiologia , Nematoides/microbiologia , Photorhabdus/fisiologia , Simbiose , Fatores de Transcrição/metabolismo
2.
Environ Microbiol ; 20(12): 4512-4525, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30136352

RESUMO

The quarternary, trimethylated amine glycine betaine (GB) is widespread in nature but its fate under anoxic conditions remains elusive. It can be used by some acetogenic bacteria as carbon and energy source but the pathway of GB metabolism has not been elucidated. We have identified a gene cluster involved in GB metabolism and studied acetogenesis from GB in the model acetogen Acetobacterium woodii. GB is taken up by a secondary active, Na+ coupled transporter of the betaine-choline-carnitine (BCC) family. GB is demethylated to dimethylglycine, the end product of the reaction, by a methyltransferase system. Further conversion of the methyl group requires CO2 as well as Na+ indicating that GB metabolism involves the Wood-Ljungdahl pathway. These studies culminate in a model for the path of carbon and electrons during acetogenensis from GB and a model for the bioenergetics of acetogenesis from GB.


Assuntos
Acetobacterium/metabolismo , Betaína/metabolismo , Acetobacterium/genética , Carbono/metabolismo , Metabolismo Energético/genética , Genes Bacterianos , Família Multigênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...