Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Geophys Res Atmos ; 127(11): e2021JD036383, 2022 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-35859907

RESUMO

Detailed knowledge of the physical and chemical properties and sources of particles that form clouds is especially important in pristine areas like the Arctic, where particle concentrations are often low and observations are sparse. Here, we present in situ cloud and aerosol measurements from the central Arctic Ocean in August-September 2018 combined with air parcel source analysis. We provide direct experimental evidence that Aitken mode particles (particles with diameters ≲70 nm) significantly contribute to cloud condensation nuclei (CCN) or cloud droplet residuals, especially after the freeze-up of the sea ice in the transition toward fall. These Aitken mode particles were associated with air that spent more time over the pack ice, while size distributions dominated by accumulation mode particles (particles with diameters ≳70 nm) showed a stronger contribution of oceanic air and slightly different source regions. This was accompanied by changes in the average chemical composition of the accumulation mode aerosol with an increased relative contribution of organic material toward fall. Addition of aerosol mass due to aqueous-phase chemistry during in-cloud processing was probably small over the pack ice given the fact that we observed very similar particle size distributions in both the whole-air and cloud droplet residual data. These aerosol-cloud interaction observations provide valuable insight into the origin and physical and chemical properties of CCN over the pristine central Arctic Ocean.

2.
J Geophys Res Atmos ; 127(6): e2021JD036059, 2022 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-35865411

RESUMO

The amount of ice versus supercooled water in clouds is important for their radiative properties and role in climate feedbacks. Hence, knowledge of the concentration of ice-nucleating particles (INPs) is needed. Generally, the concentrations of INPs are found to be very low in remote marine locations allowing cloud water to persist in a supercooled state. We had expected the concentrations of INPs at the North Pole to be very low given the distance from open ocean and terrestrial sources coupled with effective wet scavenging processes. Here we show that during summer 2018 (August and September) high concentrations of biological INPs (active at >-20°C) were sporadically present at the North Pole. In fact, INP concentrations were sometimes as high as those recorded at mid-latitude locations strongly impacted by highly active biological INPs, in strong contrast to the Southern Ocean. Furthermore, using a balloon borne sampler we demonstrated that INP concentrations were often different at the surface versus higher in the boundary layer where clouds form. Back trajectory analysis suggests strong sources of INPs near the Russian coast, possibly associated with wind-driven sea spray production, whereas the pack ice, open leads, and the marginal ice zone were not sources of highly active INPs. These findings suggest that primary ice production, and therefore Arctic climate, is sensitive to transport from locations such as the Russian coast that are already experiencing marked climate change.

3.
Gels ; 7(4)2021 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-34842644

RESUMO

Marine polymer gels play a critical role in regulating ocean basin scale biogeochemical dynamics. This brief review introduces the crucial role of marine gels as a source of aerosol particles and cloud condensation nuclei (CCN) in cloud formation processes, emphasizing Arctic marine microgels. We review the gel's composition and relation to aerosols, their emergent properties, and physico-chemical processes that explain their change in size spectra, specifically in relation to aerosols and CCN. Understanding organic aerosols and CCN in this context provides clear benefits to quantifying the role of marine nanogel/microgel in microphysical processes leading to cloud formation. This review emphasizes the DOC-marine gel/aerosolized gel-cloud link, critical to developing accurate climate models.

4.
Environ Sci Atmos ; 1(4): 161-175, 2021 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-34278305

RESUMO

The remote central Arctic during summertime has a pristine atmosphere with very low aerosol particle concentrations. As the region becomes increasingly ice-free during summer, enhanced ocean-atmosphere fluxes of aerosol particles and precursor gases may therefore have impacts on the climate. However, large knowledge gaps remain regarding the sources and physicochemical properties of aerosols in this region. Here, we present insights into the molecular composition of semi-volatile aerosol components collected in September 2018 during the MOCCHA (Microbiology-Ocean-Cloud-Coupling in the High Arctic) campaign as part of the Arctic Ocean 2018 expedition with the Swedish Icebreaker Oden. Analysis was performed offline in the laboratory using an iodide High Resolution Time-of-Flight Chemical Ionization Mass Spectrometer with a Filter Inlet for Gases and AEROsols (FIGAERO-HRToF-CIMS). Our analysis revealed significant signal from organic and sulfur-containing compounds, indicative of marine aerosol sources, with a wide range of carbon numbers and O : C ratios. Several of the sulfur-containing compounds are oxidation products of dimethyl sulfide (DMS), a gas released by phytoplankton and ice algae. Comparison of the time series of particulate and gas-phase DMS oxidation products did not reveal a significant correlation, indicative of the different lifetimes of precursor and oxidation products in the different phases. This is the first time the FIGAERO-HRToF-CIMS was used to investigate the composition of aerosols in the central Arctic. The detailed information on the molecular composition of Arctic aerosols presented here can be used for the assessment of aerosol solubility and volatility, which is relevant for understanding aerosol-cloud interactions.

5.
J Am Soc Mass Spectrom ; 30(1): 161-173, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30019163

RESUMO

In this article, an analytical methodology to investigate the proteinaceous content in atmospheric size-resolved aerosols collected at the Zeppelin observatory (79 °N, 12 °E) at Ny Ålesund, Svalbard, from September to December 2015, is proposed. Quantitative determination was performed after acidic hydrolysis using ultrahigh-performance liquid chromatography in reversed-phase mode coupled to electrospray ionization tandem mass spectrometry. Chromatographic separation, as well as specificity in the identification, was achieved by derivatization of the amino acids with N-butyl nicotinic acid N-hydroxysuccinimide ester prior to the analysis. The chromatographic run was performed within 11 min and instrumental levels of detection (LODs) were between 0.2 and 8.1 pg injected on the column, except for arginine which exhibited an LOD of 37 pg. Corresponding method LODs were between 0.01 and 1.9 fmol/m3, based on the average air sampling volume of 57 m3. The sum of free amino acids and hydrolyzed polyamino acids was shown to vary within 6-2914 and 0.02-1417 pmol/m3 for particles in sizes < 2 and 2-10 µm in equivalent aerodynamic diameter, respectively. Leucine, alanine, and valine were the most abundant among the amino acids in both aerosol size fractions. In an attempt to elucidate source areas of the collected aerosols, 5- to 10-day 3D backward trajectories reaching the sampling station were calculated. Overall, the method described here provides a first time estimate of the proteinaceous content, that is, the sum of free and polyamino acids, in size-resolved aerosols collected in the Arctic. Graphical Abstract ᅟ.


Assuntos
Aerossóis/análise , Aminoácidos/análise , Cromatografia Líquida de Alta Pressão/métodos , Espectrometria de Massas por Ionização por Electrospray/métodos , Espectrometria de Massas em Tandem/métodos , Ar/análise , Aminoácidos/química , Regiões Árticas , Atmosfera , Hidrólise , Limite de Detecção , Niacina/análogos & derivados , Niacina/farmacologia , Noruega , Tamanho da Partícula , Proteínas/química , Succinimidas/farmacologia
6.
Rapid Commun Mass Spectrom ; 32(12): 942-950, 2018 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-29520903

RESUMO

RATIONALE: Fatty acids are enriched in the ocean surface microlayer (SML) and have as a consequence been detected worldwide in sea spray aerosols. In searching for a relationship between the properties of the atmospheric aerosol and its ability to form cloud condensation nuclei and to promote cloud droplet formation over remote marine areas, the role of surface active fatty acids sourced from the SML is of interest to be investigated. Here we present a fast method for profiling of major fatty acids in SML samples collected in the high Arctic (89°N, 1°W) in the summer of 2001. METHODS: Ultrahigh-performance liquid chromatography (UHPLC)/travelling-wave ion mobility spectrometry (TWIMS)/time-of-flight (TOF) mass spectrometry (MS) for profiling was evaluated and compared with UHPLC/TOFMS. Except for evaporation and centrifugation, no sample preparation was necessary prior to the analysis. RESULTS: TOFMS data on accurate mass, isotopic ratios and fragmentation patterns enabled identification of the fatty acids. The TWIMS dimension added to the selectivity by extensive reduction of the noise level and the entire UHPLC/TWIMS/TOFMS method provided a fast profiling of the acids, ranging from C8 to C24 . Hexadecanoic and octadecanoic acids were shown to yield the highest signals among the FAs detected in a high Arctic SML sample, followed by the unsaturated octadecenoic and octadecadienoic acids. The predominance of signal from even-numbered carbon chains indicates a mainly biogenic origin of the detected FAs. CONCLUSIONS: This study presents a fast alternative method for screening and profiling of FAs, which has the advantage of not requiring any complicated sample preparation, thus limiting the loss of analytes. Almost no manual handling, together with the very small sample volumes needed, is certainly beneficial for the determination of trace amounts and should open up the field of applications to also include atmospheric aerosol and fog.

7.
Sci Total Environ ; 541: 341-347, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26410708

RESUMO

In November/December 2013 a pilot experiment on aerosol/fog interaction was conducted on a coastal hill in the suburbs of Valparaíso, Chile. Passages of garúa fog were monitored with continuous recordings of a soot photometer and an optical aerosol spectrometer. An optical fog sensor and an automatic weather station provided meteorological data with which the aerosol could be classified. High-resolution back trajectories added meteorological information. From filter samples, optical and chemical aerosol information was derived. Scavenging coefficients of black carbon (BC) and measured particulate mass below 1 µm diameter (PM1) were estimated with three approaches. Averaging over all fog periods of the campaign yielded a scavenging coefficient of only 6% for BC and 40% for PM1. Dividing the data into four 90°-wind sectors gave scavenging factors for BC ranging from 13% over the Valparaíso, Viña del Mar conurbation to 50% in the marine sector (180°-270°). The third, and independent approach was achieved with two pairs of chemical aerosol samples taken inside and outside fogs, which yielded a scavenging coefficient of 25% for BC and 70% for nonseasalt sulfate. Whereas fogs occurred rather infrequently in the beginning of the campaign highly regular daily fog cycles appeared towards the end of the experiment, which allowed the calculation of typical diurnal cycles of the aerosol in relation to a fog passage.

8.
Phys Chem Chem Phys ; 16(47): 25935-41, 2014 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-25355497

RESUMO

The high Arctic marine environment has recently detected polymer gels in atmospheric aerosol particles and cloud water originating from the surface microlayer of the open leads within the pack ice area. These polysaccharide molecules are water insoluble but water solvated, highly surface-active and highly hydrated (99% water). In order to add to the understanding and to complement missing laboratory characterization of marine polymer gels we have in this work performed an atomistic study of the assembly process and interfacial properties of polysaccharides. Our study reveals a number of salient features of the microscopic process behind polysaccharide assembly into nanogels. With three- and four-repeating units the polysaccharides assemble into a cluster in 50 ns. The aggregates grow quicker by absorbing one or two polymers each time, depending on the unit length and the type of inter-bridging cation. Although both the hydrophobic and hydrophilic domains are contracted, the latter dominates distinctly upon the contraction of solvent accessible surface areas. The establishment of inter-chain hydrogen-bonds is the key to the assembly while ionic bridges can further promote aggregation. During the assembly of the more bent four-unit polymers, intra-chain hydrogen bonds are significantly diminished by Ca(2+). Meanwhile, the percentage of Ca(2+) acting as an ionic bridge is more eminent, highlighting the significance of Ca(2+) ions for longer-chain polysaccharides. The aggregates are able to enhance surface tension more in the presence of Ca(2+) than in the presence of Na(+) owing to their more compact structure. These conclusions all demonstrate that studies of the present kind provide insight into the self-assembly process and interfacial properties of marine gels. We hope this understanding will keep up the interest in the complex and the fascinating relationship between marine microbiology, atmospheric aerosols, clouds and climate.


Assuntos
Simulação de Dinâmica Molecular , Oceanos e Mares , Polissacarídeos/química , Polissacarídeos/síntese química , Aerossóis/química , Cálcio/química , Sódio/química
9.
J Phys Chem A ; 118(10): 1879-86, 2014 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-24547982

RESUMO

Black carbon soot (BS) is considered to be the second most contributing organic matter next to carbon dioxide for the global warming effect. There is, however, so far no consensus on the quantitative warming effect due to the increased distribution of black carbon in the atmosphere. A recent report (Science 2012, 337, 1078) suggests that due to BS there is only a few percentage enhancement in absorption of BS-immersed aerosols. To get proper interpretation of the available experimental data, it becomes essential to obtain details of the microscopic origin of the absorption and scattering processes of the aerosol clusters due to the presence of soot. However, so far, due to the large spatial scale and the need for a quantum mechanical description of the particles involved in the absorption and scattering, this quest has posed an insurmountable challenge. In the present work we propose the use of a multiscale integrated approach based on molecular dynamics and a quantum mechanical-molecular mechanical method to model the optical property of molecules immersed in nanosized aerosol particles. We choose fluoranthene (FA) with varying cis-pinonic acid (CPA) impurity concentration as an illustrative example of application. We observe that normally FA tends to be on the surface of the nanoaerosols but in the presence of CPA impurities its spatial location changes to a core aggregate to some extent. We find that the absorption maximum is only slightly red-shifted in the presence of increased CPA concentrations and that the oscillator strengths are not altered significantly. The comparable values for the oscillator strengths of all the low energy excitations suggest that the absorption enhancement of the aerosol due to BS will not be substantial, which is in line with the recent experimental report in Science.

10.
J Phys Chem A ; 117(41): 10746-52, 2013 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-24063576

RESUMO

The present study illustrates the combined effect of organic and inorganic compounds on cloud droplet nucleation and activation processes representative for the marine environment. Amino acids and sea salt are common marine cloud condensation nuclei (CCN) which act as a prerequisite for growth of cloud droplets. The chemical and physical properties of these CCN play a key role for interfacial properties such as surface tension, which is important for the optical properties of clouds and for heterogeneous reactions. However, there is a lack of detailed information and in situ measurements of surface tension of such nanosized droplets. Here we present a study of the combined effect of zwitterionic glycine (ZGLY) and sea salt in nanosized water droplets using molecular dynamics simulations, where particular emphasis is placed on the surface tension for the nanosized droplets. The critical supersaturation is estimated by the Köhler equation. It is found that dissolved sea salt interacts with ZGLY through a water bridge and weakens the hydrogen bonds among ZGLYs, which has a significant effect on both surface tension and water vapor supersaturation. Clusters of glycine mixed with sea salt deliquesce more efficiently and have higher growth factors.


Assuntos
Aerossóis/química , Glicina/química , Simulação de Dinâmica Molecular , Sais/química , Tensão Superficial
11.
J Phys Chem B ; 116(10): 3198-204, 2012 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-22352372

RESUMO

Sodium halides, which are abundant in sea salt aerosols, affect the optical properties of aerosols and are active in heterogeneous reactions that cause ozone depletion and acid rain problems. Interfacial properties, including surface tension and halide anion distributions, are crucial issues in the study of the aerosols. We present results from molecular dynamics simulations of water solutions and clusters containing sodium halides with the interatomic interactions described by a conventional force field. The simulations reproduce experimental observations that sodium halides increase the surface tension with respect to pure water and that iodide anions reach the outermost layer of water clusters or solutions. It is found that the van der Waals interactions have an impact on the distribution of the halide anions and that a conventional force field with optimized parameters can model the surface tension of the salt solutions with reasonable accuracy.


Assuntos
Simulação de Dinâmica Molecular , Sais/química , Soluções/química , Aerossóis/química , Ânions/química , Análise por Conglomerados , Tensão Superficial , Água/química
12.
Proc Natl Acad Sci U S A ; 108(33): 13612-7, 2011 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-21825118

RESUMO

Marine microgels play an important role in regulating ocean basin-scale biogeochemical dynamics. In this paper, we demonstrate that, in the high Arctic, marine gels with unique physicochemical characteristics originate in the organic material produced by ice algae and/or phytoplankton in the surface water. The polymers in this dissolved organic pool assembled faster and with higher microgel yields than at other latitudes. The reversible phase transitions shown by these Arctic marine gels, as a function of pH, dimethylsulfide, and dimethylsulfoniopropionate concentrations, stimulate the gels to attain sizes below 1 µm in diameter. These marine gels were identified with an antibody probe specific toward material from the surface waters, sized, and quantified in airborne aerosol, fog, and cloud water, strongly suggesting that they dominate the available cloud condensation nuclei number population in the high Arctic (north of 80°N) during the summer season. Knowledge about emergent properties of marine gels provides important new insights into the processes controlling cloud formation and radiative forcing, and links the biology at the ocean surface with cloud properties and climate over the central Arctic Ocean and, probably, all oceans.


Assuntos
Géis/química , Transição de Fase , Água do Mar/química , Aerossóis , Regiões Árticas , Concentração de Íons de Hidrogênio , Oceanos e Mares , Sulfetos , Tempo (Meteorologia)
13.
Anal Bioanal Chem ; 399(7): 2517-29, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21305371

RESUMO

A simple and sensitive method was developed using hydrophilic interaction liquid chromatography coupled to tandem mass spectrometry for determination of monosaccharides liberated from marine polysaccharides by acidic hydrolysis. Optimal separation of diastereomeric monosaccharides including hexoses, pentoses, and deoxyhexoses was achieved using an aminopropyl bonded column with mobile phase containing ternary solvents (acetonitrile/methanol/water) in conjunction with MS/MS in SRM mode. Mechanisms for fragmentation of deprotonated monosaccharides with regard to cross-ring cleavage were proposed. Matrix effects from coeluting interferences were observed and isotopic-labeled internal standard was used to compensate for the signal suppression. The method demonstrated excellent instrumental limits of detection (LOD), ranging from 0.7 to 4.2 pg. Method LODs range from 0.9 to 5.1 nM. The proposed method was applied to the analysis of polysaccharides in seawater collected from the open leads of the central Arctic Ocean in the summer of 2008.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Monossacarídeos/análise , Polissacarídeos/química , Espectrometria de Massas em Tandem/métodos , Hidrólise , Interações Hidrofóbicas e Hidrofílicas , Estrutura Molecular , Água do Mar/análise , Extração em Fase Sólida , Espectrometria de Massas por Ionização por Electrospray/métodos
14.
Anal Chim Acta ; 662(2): 193-9, 2010 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-20171319

RESUMO

A method was established using capillary electrophoresis with indirect UV detection for analysis of monosaccharides liberated from exopolysaccharides by acidic hydrolysis. Tangential flow filtration was used to isolate high molecular weight polysaccharides from seawater. The capillary electrophoresis method included the use of a background electrolyte consisting of 2,6-dimethoxyphenol and cetyltrimethylammonium bromide. Several neutral sugars commonly existing in marine polysaccharides were separated under optimized conditions. The relative standard deviations were between 1.3% and 2.3% for relative migration time and 1.3-2.5% for peak height. Detection limits (at S/N 3) were in the range of 27.2-47.8 microM. The proposed approach was applied to the analysis of hydrolyzed colloidal polysaccharides in seawater collected from the Baltic Sea. Nanomolar levels of liberated monosaccharides in seawater samples can be detected by preconcentration up to 30,000 times.


Assuntos
Coloides/química , Eletroforese Capilar/métodos , Eletrólitos/química , Sedimentos Geológicos/química , Raios Ultravioleta
15.
Science ; 323(5913): 495-8, 2009 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-19164746

RESUMO

Carbonaceous aerosols cause strong atmospheric heating and large surface cooling that is as important to South Asian climate forcing as greenhouse gases, yet the aerosol sources are poorly understood. Emission inventory models suggest that biofuel burning accounts for 50 to 90% of emissions, whereas the elemental composition of ambient aerosols points to fossil fuel combustion. We used radiocarbon measurements of winter monsoon aerosols from western India and the Indian Ocean to determine that biomass combustion produced two-thirds of the bulk carbonaceous aerosols, as well as one-half and two-thirds of two black carbon subfractions, respectively. These constraints show that both biomass combustion (such as residential cooking and agricultural burning) and fossil fuel combustion should be targeted to mitigate climate effects and improve air quality.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...