Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Dairy Sci ; 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38490552

RESUMO

To evaluate the sodium chloride content effect on microbiological, biochemical, physicochemical and sensorial characteristics, Munster cheeses were prepared from pasteurized milk seeded with 3 yeasts (Kluyveromyces marxianus, Debaryomyces hansenii, Geotrichum candidum) and 5 ripening bacteria (Arthrobacter arilaitensis, Brevibacterium aurantiacum, Corynebacterium casei, Hafnia alvei, and Staphylococcus equorum). Experiments were performed under 1.0%, 1.7% and 2.4% NaCl levels in cheese in triplicate. Ripening (d2 - d27) was carried under 12°C and 96% RH. These kinetics were both reproducible and repeatable at 99% confidence level. For each microbial, biochemical and physicochemical parameter, 2 kinetic descriptors (maximal or minimal rate and its occurrence time) were defined. On d2 the physicochemical variables (water activity, dry matter, water content) were strongly dependent on the salting level. From d2 to d27 K. lactis was insensitive to salt while D. hansenii was stimulated. G. candidum growth appeared very sensitive to salt in cheese: at 1.0% NaCl G. candidum exhibited overgrowth, negatively impacting rind appearance, underrind consistency and thickness and off-flavor flaws. Salt concentration of 2.4% induced death of G. candidum. Four bacteria (A. arilaitensis, B. aurantiacum, C. casei, and H. alvei) were moderately sensitive to salt while S. equorum was insensitive to it. Salt level in cheese had a significant effect on carbon substrate consumption rates. Lactate consumption rate in 1.0% salted cheeses was approximately twice higher than under 2.4% NaCl. Data analysis of microorganism, biochemical, and physicochemical kinetics and sensory analysis showed that the best salt level in Munster-type cheeses to achieve an optimum balance between cheese characteristics, sensory qualities and marketability was 1.7% NaCl.

2.
J Dairy Sci ; 102(6): 5713-5725, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31005324

RESUMO

To produce a wide variety of cheeses, it is necessary to control the ripening process. To do that, artisanal goat cheeses were ripened to evaluate the effects of temperature (10 and 14°C) and relative humidity (RH; 88 and 98%) on (1) 16 physicochemical characteristics throughout ripening and (2) 19 sensory characteristics at the end of ripening (d 12). Whatever the ripening time, the physicochemical characteristics were strongly dependent on the daily productions, which affected the sensory perception of the cheeses. Both physicochemical and sensory characteristics were strongly reliant on RH, whereas only a few of the characteristics were influenced by temperature changes. On d 12, whatever the ripening temperature, an RH increase from 88% to 98% modified many cheese characteristics (core pH, lactate consumption, underrind thickening, dry matter content, and hardness). As a result of these physicochemical properties, changes in perception were observed: the cheeses ripened under 88% RH were dry and hard compared with those ripened under 98% RH. An RH of 98% led to an acceleration of the ripening process, inducing a slightly ammonia and milky flavor and a sticky and creamy texture in the mouth. However, cheeses ripened under 14°C and 98% RH were also indicative of overripened cheeses: a temperature of 14°C induced an acceleration of the ripening process due to physicochemical modifications compared with a temperature of 10°C. Nevertheless, when the cheeses on d 0 were still very humid and soft, those ripened under 98% RH collapsed and were overripened with a liquid underrind. This study provides a means for achieving a better and more rational control of the ripening process in artisanal lactic goat cheeses.


Assuntos
Queijo/análise , Manipulação de Alimentos/métodos , Paladar , Amônia/análise , Animais , Cabras , Dureza , Humanos , Umidade , Ácido Láctico/análise , Leite/química , Temperatura , Água/análise
3.
PLoS One ; 10(4): e0124360, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25867897

RESUMO

Cheese ripening is a complex biochemical process driven by microbial communities composed of both eukaryotes and prokaryotes. Surface-ripened cheeses are widely consumed all over the world and are appreciated for their characteristic flavor. Microbial community composition has been studied for a long time on surface-ripened cheeses, but only limited knowledge has been acquired about its in situ metabolic activities. We applied metagenomic, metatranscriptomic and biochemical analyses to an experimental surface-ripened cheese composed of nine microbial species during four weeks of ripening. By combining all of the data, we were able to obtain an overview of the cheese maturation process and to better understand the metabolic activities of the different community members and their possible interactions. Furthermore, differential expression analysis was used to select a set of biomarker genes, providing a valuable tool that can be used to monitor the cheese-making process.


Assuntos
Queijo , Microbiota , Metagenômica , Transcriptoma
4.
J Dairy Sci ; 96(6): 4031-40, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23587382

RESUMO

Penicillium camemberti plays a major role in the flavor and appearance of Camembert-type cheeses. However, little is known about its mycelium growth kinetics during ripening. We monitored the growth of P. camemberti mycelium in Camembert-type cheeses using real-time PCR in 4 ripening runs, performed at 2 temperatures (8 and 16°C) and 2 relative humidities (88 and 98%). These findings were compared with P. camemberti quantification by spore concentration. During the first phase, the mycelium grew but no spores were produced, regardless of the ripening conditions. During the second phase, which began when lactose was depleted, the concentration of spores increased, especially in the cheeses ripened at 16°C. Sporulation was associated with a large decrease in the mycelial concentration in the cheeses ripened at 16°C and 98% relative humidity. It was hypothesized that lactose is the main energy source for the growth of P. camemberti mycelium at the beginning of ripening and that its depletion would trigger stress, resulting in sporulation.


Assuntos
Queijo/microbiologia , Umidade , Penicillium/crescimento & desenvolvimento , Reação em Cadeia da Polimerase em Tempo Real , Temperatura , DNA Fúngico/análise , Manipulação de Alimentos/métodos , Lactose/metabolismo , Micélio/crescimento & desenvolvimento , Penicillium/genética , Penicillium/fisiologia , Esporos Fúngicos/crescimento & desenvolvimento
5.
J Dairy Res ; 77(3): 287-94, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20462468

RESUMO

This study compares the colouring capacity of Brevibacterium aurantiacum (BA), Brevibacterium BL and Arthrobacter species AS in relation to deacidified media made from lactic curd (Epoisses), mixed curds (Munster) and rennet curds (Livarot or Reblochon). BA colouring capacity proved to be constant, leading to a dark orange colour, irrespective of the deacidified media. However, it gave too dark a colour for Reblochon. The strains BL and AS were not adapted to the colouring of Epoisses deacidified medium. On the Livarot or Munster deacidified medium, these two strains provided a light yellow orange colour range that was not suitable for these cheeses. However, these two strains (BL and AS) produced a suitable colour for Reblochon deacidified medium.


Assuntos
Arthrobacter/metabolismo , Brevibacterium/metabolismo , Queijo/microbiologia , Corantes de Alimentos/metabolismo , Biofilmes , Cor , Manipulação de Alimentos/métodos , Microbiologia de Alimentos , Concentração de Íons de Hidrogênio
6.
Food Microbiol ; 27(2): 302-10, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20141950

RESUMO

The anti-listerial activity of microfloras from the surface of various smear-ripened cheeses was evaluated using four methods that were then compared. Method A measured the anti-listerial potential of supernatants from short-time liquid cultures, whereas in Method B, a model cheese was co-inoculated with the microflora and Listeria innocua test strains. Method C was based on successive propagations of the microfloras on this model cheese, and Method D on successive propagations of the microfloras together with Listeria test strains. Anti-listerial activity considerably depended on the microflora used. Significant correlations were obtained between Methods A and B and Methods C and D. With Methods C and D, the highest anti-listerial activity was obtained with the microflora from a Livarot-type cheese (FC12). To investigate the cause of the anti-listerial activity of FC12, Fourier Transform InfraRed (FTIR) analyses of microbial populations were performed on the original microflora as well as on the microflora after propagations on the model cheese. The composition of FC12 had changed considerably upon propagation, and in the propagated microflora, the population of yeasts was dominated by Yarrowia lipolytica strains, whereas the population of bacteria was dominated by Vagococcus species.


Assuntos
Antibiose , Bactérias/classificação , Biodiversidade , Queijo/microbiologia , Manipulação de Alimentos/métodos , Listeria/crescimento & desenvolvimento , Bactérias/crescimento & desenvolvimento , Bactérias/isolamento & purificação , Meios de Cultura/classificação , Microbiologia de Alimentos , Doenças Transmitidas por Alimentos/microbiologia , Doenças Transmitidas por Alimentos/prevenção & controle , Humanos
7.
J Dairy Res ; 74(2): 218-25, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17291387

RESUMO

Phenomena generating FFAs, important flavour precursors, are significant in cheese ripening. In Camembert-like cheeses, it was intended to establish the relationships between the dynamics of FFA concentrations changes and the succession of ripening microflora during ripening. Experimental Camembert-type cheeses were prepared in duplicate from pasteurised milk inoculated with Kluyveromyces lactis, Geotrichum candidum, Penicillium camemberti, and Brevibacterium aurantiacum under aseptic conditions. For each cheese and each cheesy medium, concentrations of FFAs with odd-numbered carbons, except for 9:0 and 13:0, did not change over time. For long-chain FFAs, concentrations varied with the given cheese part (rind or core). K. lactis produced only short or medium-chain FFAs during its growth and had a minor influence on caproic, caprylic, capric, and lauric acids in comparison with G. candidum, the most lipolytic of the strains used here. It generated all short or medium-chain FFAs (4:0-12:0) during its exponential and slowdown growth periods and only long-chain ones (14:0-18:0) during its stationary phase. Pen. camemberti produced more long-chain FFAs (14:0-18:0) during its sporulation. Brev. aurantiacum did not generate any FFAs. The evidence of links between specific FFAs and the growth of a given microorganism is shown.


Assuntos
Brevibacterium/isolamento & purificação , Candida/isolamento & purificação , Queijo/análise , Queijo/microbiologia , Ácidos Graxos não Esterificados/análise , Manipulação de Alimentos/métodos , Geotrichum/isolamento & purificação , Kluyveromyces/isolamento & purificação , Penicillium/isolamento & purificação , Animais
8.
J Dairy Res ; 73(4): 441-8, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16978429

RESUMO

The growth of five bacteria isolated from red-smear cheeses, Brevibacterium aurantiacum, Corynebacterium casei, Corynebacterium variabile, Microbacterium gubbeenense and Staphylococcus saprophyticus in mixed cultures with Debaryomyces hansenii on aseptic model cheese curd at 10 and 14 degrees C was investigated. At both temperatures, C. casei and Micro. gubbeenense had a longer lag phase than C. variabile, Brevi. aurantiacum and Staph. saprophyticus. In all cultures, lactose was utilised first and was consumed more rapidly at 14 degrees C than at 10 degrees C, i.e., 6 d at 14 degrees C and 10 d at 10 degrees C. This utilisation coincided with the exponential growth of Deb. hansenii on the cheese surface. Lactate was also used as a carbon source and was totally consumed after 21 d at 14 degrees C and approximately 90% was consumed after 21 d at 10 degrees C regardless of the ripening culture. Small differences (<0.5 pH unit) in the surface-pH during ripening were noticeable between ripening cultures. Differences in the colour development of the mixed cultures with the yeast control were only noticeable after 15 d for Brevi. aurantiacum and after 21 d for the other bacteria. Regardless of the organisms tested, colour development and colour intensity were also greater at 14 degrees C than at 10 degrees C. This study has provided useful information on the growth and contribution to colour development of these bacteria on cheese.


Assuntos
Queijo/microbiologia , Fermentação , Manipulação de Alimentos/métodos , Microbiologia de Alimentos , Saccharomycetales/crescimento & desenvolvimento , Brevibacterium/crescimento & desenvolvimento , Contagem de Colônia Microbiana , Cor , Corynebacterium/crescimento & desenvolvimento , Concentração de Íons de Hidrogênio , Saccharomycetales/metabolismo , Staphylococcus/crescimento & desenvolvimento , Temperatura , Fatores de Tempo
9.
J Dairy Res ; 71(3): 346-54, 2004 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15354582

RESUMO

A holistic approach of a mould cheese ripening is presented. The objective was to establish relationships between the different microbiological and biochemical changes during cheese ripening. Model cheeses were prepared from pasteurized milk inoculated with Kluyveromyces lactis, Geotrichum candidum, Penicillium camemberti and Brevibacterium linens under aseptic conditions. Two cheese-making trials with efficient control of environmental parameters were carried out and showed similar ripening characteristics. K. lactis grew rapidly between days 1 and 6 (generation time around 48 h). G. candidum grew exponentially between days 4 and 10 (generation time around 4.6 d). Brevi. linens also grew exponentially but after day 6 when Pen. camemberti mycelium began developing and the pH of the rind was close to 7. Its exponential growth presented 3 phases in relation to carbon and nitrogen substrate availability. Concentrations of Pen. camemberti mycelium were not followed by viable cell count but they were evaluated visually. The viable microorganism concentrations were well correlated with the carbon substrate concentrations in the core and in the rind. The lactose concentrations were negligible after 10 d ripening, and changes in lactate quantities were correlated with fungi flora. The pH of the inner part depended on NH3. Surface pH was significantly related to NH3 concentration and to fungi growth. The acid-soluble nitrogen (ASN) and non-protein nitrogen (NPN) indexes and NH3 concentrations of the rind were low until day 6, and then increased rapidly to follow the fungi concentrations until day 45. The ASN and NPN indexes and NH3 concentrations in the core were lower than in the rind and they showed the same evolution. G. candidum and Pen. camemberti populations have a major effect on proteolysis; nevertheless, K. lactis and Brevi. linens cell lysis also had an impact on proteolysis. Viable cell counts of K. lactis, G. candidum, Pen. camemberti and Brevi. linens were correlated with the environmental conditions, with proteolytic products and with carbon substrate assimilation. NH3 diffusion from surface to the cheese core during ripening was highly suspected. Interaction phenomena between microorganisms are discussed.


Assuntos
Queijo/análise , Queijo/microbiologia , Tecnologia de Alimentos , Amônia/análise , Brevibacterium/crescimento & desenvolvimento , Fenômenos Químicos , Físico-Química , Tecnologia de Alimentos/métodos , Geotrichum/crescimento & desenvolvimento , Concentração de Íons de Hidrogênio , Kluyveromyces/crescimento & desenvolvimento , Ácido Láctico/análise , Lactose/análise , Nitrogênio/análise , Penicillium/crescimento & desenvolvimento , Solubilidade
10.
J Dairy Res ; 71(3): 355-66, 2004 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15354583

RESUMO

Flavour generation in cheese is a major aspect of ripening. In order to enhance aromatic qualities it is necessary to better understand the chemical and microbiological changes. Experimental Camembert-type cheeses were prepared in duplicate from pasteurized milk inoculated with Kluyveromyces lactis, Geotrichum candidum, Penicillium camemberti and Brevibacterium linens under aseptic conditions. Two replicates performed under controlled conditions of temperature (12 degrees C), relative humidity (95 +/- 2%), and atmosphere showed similar ripening characteristics. The evolutions of metabolite concentrations were studied during ripening. The volatile components were extracted by dynamic headspace extraction, separated and quantified by gas chromatography and identified by mass spectrometry. For each cheese the volatile concentrations varied with the part considered (rind or core). Except for ethyl acetate and 2-pentanone, the volatile quantities observed were higher than their perception thresholds. The flavour component production was best correlated with the starter strains. During the first 10 days the ester formations (ethyl, butyl and isoamyl acetates) were associated with the concentrations of K. lactis and G. candidum. The rind quantity of esters was lower than that observed in core probably due to (1) a diffusion from the core to the surface and (2) evaporation from the surface to the chamber atmosphere. G. candidum and Brev. linens association produced 3 methyl butanol and methyl 3-butanal from leucine, respectively. DMDS came from the methionine catabolism due to Brev. linens. Styrene production was attributed to Pen. camemberti. 2-Pentanone evolution was associated with Pen. camemberti spores and G. candidum. 2-Heptanone changes were not directly related to flora activities while 2-octanone production was essentially due to G. candidum. This study also demonstrates the determining role of volatile component diffusion.


Assuntos
Queijo/análise , Queijo/microbiologia , Tecnologia de Alimentos , Odorantes/análise , Acetatos/análise , Aminoácidos/metabolismo , Brevibacterium/crescimento & desenvolvimento , Metabolismo dos Carboidratos , Cromatografia Gasosa , Ésteres/análise , Ácidos Graxos não Esterificados/metabolismo , Ácidos Graxos Voláteis/análise , Tecnologia de Alimentos/métodos , Geotrichum/crescimento & desenvolvimento , Kluyveromyces/crescimento & desenvolvimento , Metabolismo dos Lipídeos , Espectrometria de Massas , Proteínas do Leite/metabolismo , Penicillium/crescimento & desenvolvimento , Volatilização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...