Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 95(3)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38451145

RESUMO

Parametric amplifiers have become a workhorse in superconducting quantum computing; however, research and development of these devices has been hampered by inconsistent and, sometimes, misleading noise performance characterization methodologies. The concepts behind noise characterization are deceptively simple, and there are many places where one can make mistakes, either in measurement or in interpretation and analysis. In this article, we cover the basics of noise performance characterization and the special problems it presents in parametric amplifiers with limited power handling capability. We illustrate the issues with three specific examples: a high-electron mobility transistor amplifier, a Josephson traveling-wave parametric amplifier, and a Josephson parametric amplifier. We emphasize the use of a 50-Ω shot noise tunnel junction (SNTJ) as a broadband noise source, demonstrating its utility for cryogenic amplifier amplifications. These practical examples highlight the role of loss as well as the additional parametric amplifier "idler" input mode.

2.
Nature ; 591(7851): 575-579, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33762768

RESUMO

Delivering on the revolutionary promise of a universal quantum computer will require processors with millions of quantum bits (qubits)1-3. In superconducting quantum processors4, each qubit is individually addressed with microwave signal lines that connect room-temperature electronics to the cryogenic environment of the quantum circuit. The complexity and heat load associated with the multiple coaxial lines per qubit limits the maximum possible size of a processor to a few thousand qubits5. Here we introduce a photonic link using an optical fibre to guide modulated laser light from room temperature to a cryogenic photodetector6, capable of delivering shot-noise-limited microwave signals directly at millikelvin temperatures. By demonstrating high-fidelity control and readout of a superconducting qubit, we show that this photonic link can meet the stringent requirements of superconducting quantum information processing7. Leveraging the low thermal conductivity and large intrinsic bandwidth of optical fibre enables the efficient and massively multiplexed delivery of coherent microwave control pulses, providing a path towards a million-qubit universal quantum computer.

3.
Phys Rev Lett ; 126(2): 020502, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33512236

RESUMO

The act of observing a quantum object fundamentally perturbs its state, resulting in a random walk toward an eigenstate of the measurement operator. Ideally, the measurement is responsible for all dephasing of the quantum state. In practice, imperfections in the measurement apparatus limit or corrupt the flow of information required for quantum feedback protocols, an effect quantified by the measurement efficiency. Here, we demonstrate the efficient measurement of a superconducting qubit using a nonreciprocal parametric amplifier to directly monitor the microwave field of a readout cavity. By mitigating the losses between the cavity and the amplifier, we achieve a measurement efficiency of (72±4)%. The directionality of the amplifier protects the readout cavity and qubit from excess backaction caused by amplified vacuum fluctuations. In addition to providing tools for further improving the fidelity of strong projective measurement, this work creates a test bed for the experimental study of ideal weak measurements, and it opens the way toward quantum feedback protocols based on weak measurement such as state stabilization or error correction.

4.
Phys Rev Lett ; 123(24): 247701, 2019 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-31922827

RESUMO

We present a new optomechanical device where the motion of a micromechanical membrane couples to a microwave resonance of a three-dimensional superconducting cavity. With this architecture, we realize ultrastrong parametric coupling, where the coupling not only exceeds the dissipation in the system but also rivals the mechanical frequency itself. In this regime, the optomechanical interaction induces a frequency splitting between the hybridized normal modes that reaches 88% of the bare mechanical frequency, limited by the fundamental parametric instability. The coupling also exceeds the mechanical thermal decoherence rate, enabling new applications in ultrafast quantum state transfer and entanglement generation.

5.
Phys Rev Appl ; 7(2)2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38501125

RESUMO

We report on the design and implementation of a field-programmable Josephson amplifier (FPJA)-a compact and lossless superconducting circuit that can be programmed in situ by a set of microwave drives to perform reciprocal and nonreciprocal frequency conversion and amplification. In this work, we demonstrate four modes of operation: frequency conversion (transmission of -0.5 dB, reflection of -30 dB), circulation (transmission of -0.5 dB, reflection of -30 dB, isolation of 30 dB), phase-preserving amplification (gain > 20 dB, one photon of added noise) and directional phase-preserving amplification (reflection of -10 dB, forward gain of 18 dB, reverse isolation of 8 dB, one photon of added noise). The system exhibits quantitative agreement with the theoretical prediction. Based on a gradiometric superconducting quantum-interference device with Nb/Al-AlOx/Nb Josephson junctions, the FPJA is first-order insensitive to flux noise and can be operated without magnetic shielding at low temperature. Owing to its flexible design and compatibility with existing superconducting fabrication techniques, the FPJA offers a straightforward route toward on-chip integration with superconducting quantum circuits such as qubits and microwave optomechanical systems.

6.
Phys Rev Lett ; 116(4): 043601, 2016 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-26871329

RESUMO

We report the observation of efficient and low-noise frequency conversion between two microwave modes, mediated by the motion of a mechanical resonator subjected to radiation pressure. We achieve coherent conversion of more than 10^{12} photons/s with a 95% efficiency and a 14 kHz bandwidth. With less than 10^{-1} photons·s^{-1}·Hz^{-1} of added noise, this optomechanical frequency converter is suitable for quantum state transduction. We show the ability to operate this converter as a tunable beam splitter, with direct applications for photon routing and communication through complex quantum networks.

7.
Phys Rev Lett ; 116(1): 013602, 2016 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-26799018

RESUMO

We measure the fundamental noise processes associated with a continuous linear position measurement of a micromechanical membrane incorporated in a microwave cavity optomechanical circuit. We observe the trade-off between the two fundamental sources of noise that enforce the standard quantum limit: the measurement imprecision and radiation pressure backaction from photon shot noise. We demonstrate that the quantum backaction of the measurement can overwhelm the intrinsic thermal motion by 24 dB, entering a new regime for cavity optomechanical systems.

8.
Phys Rev X ; 5(4): 041037, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-27057422

RESUMO

By coupling a macroscopic mechanical oscillator to two microwave cavities, we simultaneously prepare and monitor a nonclassical steady state of mechanical motion. In each cavity, correlated radiation pressure forces induced by two coherent drives engineer the coupling between the quadratures of light and motion. We, first, demonstrate the ability to perform a continuous quantum nondemolition measurement of a single mechanical quadrature at a rate that exceeds the mechanical decoherence rate, while avoiding measurement backaction by more than 13 dB. Second, we apply this measurement technique to independently verify the preparation of a squeezed state in the mechanical oscillator, resolving quadrature fluctuations 20% below the quantum noise.

9.
Phys Rev Lett ; 112(12): 123601, 2014 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-24724648

RESUMO

We use a flux-biased radio frequency superconducting quantum interference device (rf SQUID) with an embedded flux-biased direct current SQUID to generate strong resonant and nonresonant tunable interactions between a phase qubit and a lumped-element resonator. The rf SQUID creates a tunable magnetic susceptibility between the qubit and resonator providing resonant coupling strengths from zero to near the ultrastrong coupling regime. By modulating the magnetic susceptibility, nonresonant parametric coupling achieves rates >100 MHz. Nonlinearity of the magnetic susceptibility also leads to parametric coupling at the subharmonics of the qubit-resonator detuning.

10.
Phys Rev Lett ; 108(10): 107001, 2012 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-22463441

RESUMO

By adding a large inductance in a dc-SQUID phase qubit loop, one decouples the junctions' dynamics and creates a superconducting artificial atom with two internal degrees of freedom. In addition to the usual symmetric plasma mode (s mode) which gives rise to the phase qubit, an antisymmetric mode (a mode) appears. These two modes can be described by two anharmonic oscillators with eigenstates |ns> and |na> for the s and a mode, respectively. We show that a strong nonlinear coupling between the modes leads to a large energy splitting between states |0s,1a> and |2s,0a>. Finally, coherent frequency conversion is observed via free oscillations between the states |0s,1a> and |2s,0a>.

11.
Phys Rev Lett ; 107(19): 197002, 2011 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-22181637

RESUMO

We make a detailed theoretical description of the two-dimensional nature of a dc SQUID, analyzing the coupling between its two orthogonal phase oscillation modes. While it has been shown that the mode defined as "longitudinal" can be initialized, manipulated, and measured, so as to encode a quantum bit of information, the mode defined as "transverse" is usually repelled at high frequency and does not interfere in the dynamics. We show that, using typical parameters of existing devices, the transverse mode energy can be made of the order of the longitudinal one. In this regime, we can observe a strong coupling between these modes, described by a Hamiltonian providing a wide range of interesting effects, such as conditional quantum operations and entanglement. This coupling also creates an atomiclike structure for the combined two mode states, with a V-like scheme.

12.
Phys Rev Lett ; 102(9): 097004, 2009 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-19392556

RESUMO

We investigate a quadratic-quartic anharmonic oscillator formed by a potential well between two potential barriers. We realize this novel potential with a dc SQUID at near-zero current bias and flux bias near half a flux quantum. Escape out of the central well can occur via tunneling through either of the two barriers. We find good agreement with a generalized double-path macroscopic quantum tunneling theory. We also demonstrate an "optimal line" in current and flux bias along which the oscillator, which can be operated as a phase qubit, is insensitive to decoherence due to low-frequency current fluctuations.

13.
Phys Rev Lett ; 100(18): 187003, 2008 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-18518410

RESUMO

We have realized a tunable coupling over a large frequency range between an asymmetric Cooper pair transistor (charge qubit) and a dc SQUID (phase qubit). Our circuit enables the independent manipulation of the quantum states of each qubit as well as their entanglement. The measurement of the charge qubit's quantum states is performed by an adiabatic quantum transfer from the charge to the phase qubit. The measured coupling strength is in agreement with an analytic theory including a capacitive and a tunable Josephson coupling between the two qubits.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA