Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Funct Plant Biol ; 38(3): 246-259, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32480881

RESUMO

Present work focussed on improving the description of organogenesis, morphogenesis and metabolism in a biophysical plant model (SUNFLO) applied to sunflower (Helianthus annuus L.). This first version of the model is designed for potential growth conditions without any abiotic or biotic stresses. A greenhouse experiment was conducted to identify and estimate the phenotypic traits involved in plant productivity variability of 26 sunflower genotypes. The ability of SUNFLO to discriminate the genotypes was tested on previous results of a field survey aimed at evaluating the genetic progress since 1960. Plants were phenotyped in four directions; phenology, architecture, photosynthesis and biomass allocation. Twelve genotypic parameters were chosen to account for the phenotypic variability. SUNFLO was built to evaluate their respective contribution to the variability of yield potential. A large phenotypic variability was found for all genotypic parameters. SUNFLO was able to account for 80% of observed variability in yield potential and to analyse the phenotypic variability of complex plant traits such as light interception efficiency or seed yield. It suggested that several ways are possible to reach high yields in sunflower. Unlike classical statistical analysis, this modelling approach highlights some efficient parameter combinations used by the most productive genotypes. The next steps will be to evaluate the genetic determinisms of the genotypic parameters.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...