Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Cell Tissue Bank ; 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38038782

RESUMO

The absence of ears in children is a global problem. An implant made of costal cartilage is the standard procedure for ear reconstruction; however, side effects such as pneumothorax, loss of thoracic cage shape, and respiratory complications have been documented. Three-dimensional (3D) printing allows the generation of biocompatible scaffolds that mimic the shape, mechanical strength, and architecture of the native extracellular matrix necessary to promote new elastic cartilage formation. We report the potential use of a 3D-bioprinted poly-ε-caprolactone (3D-PCL) auricle-shaped framework seeded with remaining human microtia chondrocytes for the development of elastic cartilage for autologous microtia ear reconstruction. An in vivo assay of the neo-tissue formed revealed the generation of a 3D pinna-shaped neo-tissue, and confirmed the formation of elastic cartilage by the presence of type II collagen and elastin with histological features and a protein composition consistent with normal elastic cartilage. According to our results, a combination of 3D-PCL auricle frameworks and autologous microtia remnant tissue generates a suitable pinna structure for autologous ear reconstruction.

2.
Pharmaceutics ; 15(8)2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37631319

RESUMO

Radiosterilized pig skin (RPS) has been used as a dressing for burns since the 1980s. Its similarity to human skin in terms of the extracellular matrix (ECM) allows the attachment of mesenchymal stem cells, making it ideal as a scaffold to create cellularized constructs. The use of silver nanoparticles (AgNPs) has been proven to be an appropriate alternative to the use of antibiotics and a potential solution against multidrug-resistant bacteria. RPS can be impregnated with AgNPs to develop nanomaterials capable of preventing wound infections. The main goal of this study was to assess the use of RPS as a scaffold for autologous fibroblasts (Fb), keratinocytes (Kc), and mesenchymal stem cells (MSC) in the treatment of second-degree burns (SDB). Additionally, independent RPS samples were impregnated with AgNPs to enhance their properties and further develop an antibacterial dressing that was initially tested using a burn mouse model. This protocol was approved by the Research and Ethics Committee of the INRLGII (INR 20/19 AC). Transmission electron microscopy (TEM) and dynamic light scattering (DLS) analysis of the synthesized AgNPs showed an average size of 10 nm and rounded morphology. Minimum inhibitory concentrations (MIC) and Kirby-Bauer assays indicated that AgNPs (in solution at a concentration of 125 ppm) exhibit antimicrobial activity against the planktonic form of S. aureus isolated from burned patients; moreover, a log reduction of 1.74 ± 0.24 was achieved against biofilm formation. The nanomaterial developed with RPS impregnated with AgNPs solution at 125 ppm (RPS-AgNPs125) facilitated wound healing in a burn mouse model and enhanced extracellular matrix (ECM) deposition, as analyzed by Masson's staining in histological samples. No silver was detected by energy-dispersive X-ray spectroscopy (EDS) in the skin, and neither by Inductively Coupled Plasma Mass Spectrometry (ICP-MS) in different organs of the mouse burn model. Calcein/ethidium homodimer (EthD-1), 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT), and scanning electron microscopy (SEM) analysis demonstrated that Fb, Kc, and MSC could attach to RPS with over 95% cell viability. Kc were capable of releasing FGF at 0.5 pg above control levels, as analyzed by ELISA assays. An autologous RPS-Fb-Kc construct was implanted in a patient with SDB and compared to an autologous skin graft. The patient recovery was assessed seven days post-implantation, and the patient was followed up at one, two, and three months after the implantation, exhibiting favorable recovery compared to the gold standard, as measured by the cutometer. In conclusion, RPS effectively can be used as a scaffold for the culture of Fb, Kc, and MSC, facilitating the development of a cellularized construct that enhances wound healing in burn patients.

3.
J Biomed Mater Res A ; 105(10): 2875-2891, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28589667

RESUMO

Autologous skin transplantation is today's "gold standard" treatment for full-thickness burns. However, when > 30% of total body surface area is damaged, there is an important shortage of autologous donor sites for skin grafting; then, treatment alternatives become crucial. Such alternatives can be based on polymeric scaffolds capable of functioning as protective covers and cells/factors carriers. Chitosan (CTS) is a natural-derived polymer with relevant biological-related properties but poor mechanical performance. Improved mechanical properties can be achieved through lactic acid grafting (LA-g); nevertheless, LA-g affects the biological response towards the CTS-based materials. In this work, CTS-LA scaffolds with different LA-g percentages were synthesized and evaluated to determine appropriate LA-g degrees for full-thickness burns treatment. In vitro results indicated that the higher the LA-g percentage, the lower the capability of the scaffolds to sustain fibroblasts culture. Scaffolds with LA-g around 28% (CTS-LA28) sustained cell culture and allowed normal cell functionality. Further evaluation of CTS-LA28 as acellular and cellular grafts in a full-thickness burn mouse model showed that at 28 days post-burn, macroscopic characteristic of the reparation tissue were closer to healthy skin when cellular grafts were used for treatment; histological evaluation also showed that dermis cellularity and collagenous fibers structure were similar to those in healthy skin when cellular grafts were used for burns treatment. © 2017 Wiley Periodicals Inc. J Biomed Mater Res Part A: 105A: 2875-2891, 2017.


Assuntos
Materiais Biocompatíveis/uso terapêutico , Queimaduras/terapia , Quitosana/uso terapêutico , Ácido Láctico/uso terapêutico , Alicerces Teciduais/química , Animais , Materiais Biocompatíveis/química , Queimaduras/patologia , Células Cultivadas , Quitosana/química , Fibroblastos/citologia , Fibroblastos/patologia , Humanos , Ácido Láctico/química , Masculino , Camundongos , Camundongos Nus , Pele/patologia , Cicatrização
4.
Int. j. morphol ; 31(1): 321-328, mar. 2013. ilus
Artigo em Inglês | LILACS | ID: lil-676175

RESUMO

The aim of our research was to create an osteogenic unit in the skulls of athymic mice; however, the first challenge we faced was to find sufficient and adequate data that would allow us to determine the morphological, immunohistochemical and microtopographical characteristics that could be used as normality standards in athymic mice skulls and, hence, a reference in the event of achieving the formation of de novo bone using the osteogenic unit we proposed. Knowing the normal bone morphology in the skull of athymic mice was a necessary precondition to develop subsequently an osteogenic unit possessing the Osteogenesis, Osteoinduction and Osteoconductivity that could be compared versus those in the normal bone during its formations and remodeling processes. Therefore, we conducted a pilot study to determine bone morphological characteristics in the skull of athymic mice by means of specific histological staining: hematoxylin-eosin and Von Kossa, for osteoid tissue and mineralized bone, and Masson Tri-chrome for ossified areas. We also use immunohistochemistry to detect bone formation markers: alkaline phosphatase resulting from osteoblastic activity stimulation, type 1 collagen a bonematrix structural protein; Osteopontine, a protein specifically synthesized by osteoblasts that favors cell proliferation and remodeling in bone defects; Osteocalcine, a peptide hormone produced by osteoblasts during bone formation; and, Runx 2, a transcription factor expressed by stem cells which stimulates bone differentiation. Likewise, we used electron microscopy on the newly formed tissue to determine the presence of organic deposits, such as calcium, phosphate and magnesium in bone tissue.


Propusimos la realización de una unidad osteogénica a desarrollar en cráneo de ratones atímicos, Sin embargo, nos enfrentamos al reto de encontrar datos que nos determinaran cuales eran las características morfológicas, inmunohistoquímicas y micro-topográficas del cráneo de estos ratones atímicos, que nos sirvieran como referencia de normalidad y tener un punto de comparación, en caso de que pudiéramos lograr la formación de hueso de novo, a partir de la unidad osteogénica que propusimos. El objetivo, de conocer la morfología del hueso normal de cráneo de ratones atímicos, fue desarrollar posteriormente una unidad osteogénica que reuniera las características de Osteogénesis, Osteoinducción y Osteoconducción, y, compararlas contra las que tiene dicho hueso normal durante su proceso de formación y remodelación. Así, realizamos un estudio piloto donde establecimos características morfológicas de hueso del cráneo de ratones atímicos, a través de tinciones histológicas específicas, con hematoxilina-eosina y von Kossa para buscar tejido osteoide y hueso mineralizado y Tricrómico de Massón para observar zonas osificadas. Además, analizamos el tejido óseo a través de inmunohistoquímica, con la finalidad de buscar marcadores de formación ósea como fosfatasa alcalina que es resultado del estímulo de la actividad osteoblástica; colágena 1, la cual es una proteína estructural de la matriz ósea; osteopontina, proteína sintetizada específicamente por osteoblastos que favorece la proliferación celular y la remodelación en defectos óseos; osteocalcina hormona peptídica producida por los osteoblastos durante la formación ósea y Runx 2 Factor de transcripción expresado por las células progenitoras que estimula la diferenciación ósea. Además, sometimos el tejido óseo a microscopía electrónica para determinar la presencia de depósitos de compuestos como calcio, fósforo y magnesio.


Assuntos
Animais , Ratos , Crânio/anatomia & histologia , Crânio/crescimento & desenvolvimento , Osteogênese , Regeneração Óssea , Ratos Nus , Imuno-Histoquímica , Microscopia Eletrônica/métodos , Colágeno Tipo I , Fosfatase Alcalina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...