Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 19(2): e0297901, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38416704

RESUMO

Throughout the early stages of the COVID-19 pandemic in Mexico (August-December 2020), we closely followed a cohort of n = 100 healthcare workers. These workers were initially seronegative for Immunoglobulin G (IgG) antibodies against SARS-CoV-2, the virus that causes COVID-19, and maintained close contact with patients afflicted by the disease. We explored the database of demographic, physiological and laboratory parameters of the cohort recorded at baseline to identify potential risk factors for infection with SARS-CoV-2 at a follow-up evaluation six months later. Given that susceptibility to infection may be a systemic rather than a local property, we hypothesized that a multivariate statistical analysis, such as MANOVA, may be an appropriate statistical approach. Our results indicate that susceptibility to infection with SARS-CoV-2 is modulated by sex. For men, different physiological states appear to exist that predispose to or protect against infection, whereas for women, we did not find evidence for divergent physiological states. Intriguingly, male participants who remained uninfected throughout the six-month observation period, had values for mean arterial pressure and waist-to-hip ratio that exceeded the normative reference range. We hypothesize that certain risk factors that worsen the outcome of COVID-19 disease, such as being overweight or having high blood pressure, may instead offer some protection against infection with SARS-CoV-2.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Masculino , Feminino , COVID-19/epidemiologia , Pandemias/prevenção & controle , Fatores de Risco , Imunoglobulina G , Pessoal de Saúde , Anticorpos Antivirais
2.
Healthcare (Basel) ; 10(5)2022 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-35628032

RESUMO

Health care workers (HCW) are at high risk of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. The incidence of SARS-CoV-2 infection in HCW has been examined in cross-sectional studies by quantitative polymerase chain reaction (qPCR) tests, which may lead to underestimating exact incidence rates. We thus investigated the incidence of SARS-CoV-2 infection in a group of HCW at a dedicated coronavirus disease 2019 (COVID-19) hospital in a six-month follow-up period. We conducted a prospective cohort study on 109 participants of both sexes working in areas of high, moderate, and low SARS-CoV-2 exposure. qPCR tests in nasopharyngeal swabs and anti-SARS-CoV-2 IgG serum antibodies were assessed at the beginning and six months later. Demographic, clinical, and laboratory parameters were analyzed according to IgG seropositivity by paired Student's T-test or the chi-square test. The incidence rate of SARS-CoV-2 infection was considerably high in our cohort of HCW (58%), among whom 67% were asymptomatic carriers. No baseline risk factors contributed to the infection rate, including the workplace. It is still necessary to increase hospital safety procedures to prevent virus transmissibility from HCW to relatives and non-COVID-19 patients during the upcoming waves of contagion.

3.
Front Physiol ; 11: 612598, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33510648

RESUMO

Currently, research in physiology focuses on molecular mechanisms underlying the functioning of living organisms. Reductionist strategies are used to decompose systems into their components and to measure changes of physiological variables between experimental conditions. However, how these isolated physiological variables translate into the emergence -and collapse- of biological functions of the organism as a whole is often a less tractable question. To generate a useful representation of physiology as a system, known and unknown interactions between heterogeneous physiological components must be taken into account. In this work we use a Complex Inference Networks approach to build physiological networks from biomarkers. We employ two unrelated databases to generate Spearman correlation matrices of 81 and 54 physiological variables, respectively, including endocrine, mechanic, biochemical, anthropometric, physiological, and cellular variables. From these correlation matrices we generated physiological networks by selecting a p-value threshold indicating statistically significant links. We compared the networks from both samples to show which features are robust and representative for physiology in health. We found that although network topology is sensitive to the p-value threshold, an optimal value may be defined by combining criteria of stability of topological features and network connectedness. Unsupervised community detection algorithms allowed to obtain functional clusters that correlate well with current medical knowledge. Finally, we describe the topology of the physiological networks, which lie between random and ordered structural features, and may reflect system robustness and adaptability. Modularity of physiological networks allows to explore functional clusters that are consistent even when considering different physiological variables. Altogether Complex Inference Networks from biomarkers provide an efficient implementation of a systems biology approach that is visually understandable and robust. We hypothesize that physiological networks allow to translate concepts such as homeostasis into quantifiable properties of biological systems useful for determination and quantification of health and disease.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...