Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
IEEE Trans Biomed Circuits Syst ; 10(3): 779-86, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26841411

RESUMO

With the breakthrough of the Internet of Things and the steady increase of wireless applications in the daily environment, the assessment of radio frequency electromagnetic field (RF-EMF) exposure is key in determining possible health effects of exposure to certain levels of RF-EMF. This paper presents the first experimental validation of a novel personal exposimeter system based on a distributed measurement approach to achieve higher measurement quality and lower measurement variability than the commonly used single point measurement approach of existing exposimeters. An important feature of the system is the integration of inertial sensors in order to determine activity and posture during exposure measurements. The system is designed to assess exposure to frequencies within the 389 to 464, 779 to 928 and 2400 to 2483.5 MHz bands using only two transceivers per node. In this study, the 2400 to 2483.5 MHz band is validated. Every node provides antenna diversity for the different bands in order to achieve higher sensitivity at these frequencies. Two AAA batteries power each standalone node and as such determine the node hardware size of this proof of concept (53 mm×25 mm×15 mm) , making it smaller than any other commercially available exposimeter.


Assuntos
Técnicas Biossensoriais/instrumentação , Campos Eletromagnéticos , Monitoramento Ambiental/instrumentação , Exposição Ambiental , Humanos , Telemetria/instrumentação , Tecnologia sem Fio/instrumentação
2.
Health Phys ; 108(4): 407-18, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25706134

RESUMO

This paper describes the design, calibration, and measurements with a personal, distributed exposimeter (PDE) for the on-body detection of radio frequency (RF) electromagnetic fields due to Wireless Fidelity (WiFi) networks. Numerical simulations show that using a combination of two RF nodes placed on the front and back of the body reduces the 50% prediction interval (PI50) on the incident free-space electric-field strength (Equation is included in full-text article.). Median reductions of 10 dB and 9.1 dB are obtained compared to the PI50 of a single antenna placed on the body using a weighted arithmetic and geometric average, respectively. Therefore, a simple PDE topology based on two nodes, which are deployed on opposite sides of the human torso, is applied for calibration and measurements. The PDE is constructed using flexible, dual-polarized textile antennas and wearable electronics, which communicate wirelessly with a Universal Serial Bus (USB) connected receiver and can be unobtrusively integrated into a garment. The calibration of the PDE in an anechoic chamber proves that the PI50 of the measured (Equation is included in full-text article.)is reduced to 3.2 dB. To demonstrate the real-life usability of the wireless device, a subject was equipped with the PDE during a walk in the city of Ghent, Belgium. Using a sample frequency of 2 Hz, an average incident power density of 59 nW m was registered in the WiFi frequency band during this walk.


Assuntos
Campos Eletromagnéticos , Exposição Ambiental , Imagens de Fantasmas , Monitoramento de Radiação/instrumentação , Tecnologia sem Fio , Bélgica , Calibragem , Simulação por Computador , Humanos
3.
Bioelectromagnetics ; 34(7): 563-7, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23740872

RESUMO

For the first time, a personal distributed exposimeter (PDE) for radio frequency (RF) measurements is presented. This PDE is designed based on numerical simulations and is experimentally evaluated using textile antennas and wearable electronics. A prototype of the PDE is calibrated in an anechoic chamber. Compared to conventional exposimeters, which only measure in one position on the body, an excellent isotropy of 0.5 dB (a factor of 1.1) and a 95% confidence interval of 7 dB (a factor of 5) on power densities are measured.


Assuntos
Meio Ambiente , Imagens de Fantasmas , Ondas de Rádio , Radiometria/instrumentação , Intervalos de Confiança , Humanos , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...