Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Orthop ; 50: 49-57, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38162259

RESUMO

Introduction: Thi study evalautes a new bone-preserving femoral head cover that mimics the articular cartilage of the femoral head. Methods: A specially developed polyurethane (PU) was evaluated in biocompatibility (cytotoxicity test) and mechanical response to tensile loading. In the cytotoxicity test, steam sterilized (SS) and ethylene oxide sterilized (EtO) PU samples were incubated separately in a cell culture medium. The seeded cell line MG-63 was then added to these sample-incubated cell culture mediums. One negative control group and one positive control group were also evaluated. The cells in each group were cultured for seven days before being quantified using the alamarBlue assay. In the mechanical test, the femoral head cover implants were separated into three groups of three samples. Each group represented a different implant insertion idea: direct insertion (uc sample) and another two insertion modes (is and ss samples) representing implants with enclosure mechanisms. The test consisted of distance-controlled cyclic tensile loadings followed by a failure test. Results: The cytotoxicity test results show no significant difference in fluorescence intensity between the negative control, the three SS groups, and one EtO group (P > 0.05). However, the other two EtO groups exhibit significantly lower fluorescence intensity compared with the negative control (P < 0.05). In the mechanical test, the is samples have the highest cyclic loading force at 559.50 ± 51.41 N, while the uc samples exhibit the highest force in the failure test at 632.16 ± 50.55 N. There are no significant differences (P > 0.05) among the uc, is, and ss groups in terms of stiffness. Conclusion: The cytotoxicity test and the mechanical experiment provide initial assessments of the proposed PU femoral head cover implant. The evaluation outcomes of this study could serve as a foundation for developing more functional design and testing methods, utilizing numerical simulations, and developing animal/clinical trials in the future.

2.
J Orthop Surg Res ; 18(1): 31, 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36631843

RESUMO

BACKGROUND: This in vitro study investigated the osseointegration and implant integration of high performance oxide ceramics (HPOC) compared to titanium implants in rabbits. METHODS: Histomorphometry was conducted around the distal, proximal, medial, and lateral aspects of the HPOC to quantify the amount of mature and immature ossification within the bone interface. Histomorphometry was conducted by a trained musculoskeletal pathologist. The region of interest (ROI) represented the percentage of surrounding area of the implant. The percentage of ROI covered by osteoid implant contact (OIC) and mature bone implant contact (BIC) were assessed. The surrounding presence of bone resorption, necrosis, and/or inflammation were quantitatively investigated. RESULTS: All 34 rabbits survived the 6- and 12-week experimental period. All HPOC implants remained in situ. The mean weight difference from baseline was + 647.7 mg (P < 0.0001). The overall OIC of the ceramic group was greater at 6 weeks compared to the titanium implants (P = 0.003). The other endpoints of interest were similar between the two implants at all follow-up points. No difference was found in BIC at 6- and 12-weeks follow-up. No bone necrosis, resorption, or inflammation were observed. CONCLUSION: HPOC implants demonstrated a greater osteoid implant contact at 6 weeks compared to the titanium implants, with no difference found at 12 weeks. The percentage of bone implant contact of HPOC implants was similar to that promoted by titanium implants.


Assuntos
Osteogênese , Titânio , Animais , Coelhos , Titânio/efeitos adversos , Dióxido de Silício , Óxidos , Osseointegração , Cerâmica , Propriedades de Superfície , Materiais Revestidos Biocompatíveis , Implantes Experimentais
4.
Sci Rep ; 12(1): 20660, 2022 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-36450814

RESUMO

During Autologous Matrix-Induced Chondrogenesis (AMIC), the membrane is often glued into the chondral defect. However, whether fibrin glue influences cells proliferation and migration remain unclear. This study evaluated the impact of fibrin glue addition to biologic membranes loaded with bone marrow-derived mesenchymal stem cells (B-MSCs). A porcine derived collagen membrane (Cartimaix, Matricel GmbH, Germany) was used. B-MSCs were harvested from three different unrelated donors. The membranes were embedded in mounting medium with DAPI (ABCAM, Cambridge, UK) and analysed at 1-, 2-, 3-, 4-, 6-, and at 8-week follow-up. The DAPI ties the DNA of the cell nucleus, emitting blue fluorescence. DAPI/nuclei signals were analysed with fluorescence microscopy at 100-fold magnification. The group without fibrin glue demonstrated greater migration of the B-MSCs within the membrane at week 4 (P < 0.001), 6 (P < 0.001), and 8 (P < 0.001). No difference was found at week 1, 2, and 3. The group without fibrin glue demonstrated greater proliferation of B-MSCs within the membrane. These differences were significant at week 1 (P = 0.02), 2 (P = 0.008), 3 (P = 0.0009), 4 (P < 0.0001), 6 (P < 0.0001), 8 (P < 0.0001). Concluding, in the present setting, the use of fibrin in a collagenic biomembrane impairs B-MSCs proliferation and migration in vitro.


Assuntos
Adesivo Tecidual de Fibrina , Células-Tronco Mesenquimais , Suínos , Animais , Adesivo Tecidual de Fibrina/farmacologia , Medula Óssea , Colágeno , Proliferação de Células
5.
BMC Genomics ; 22(1): 254, 2021 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-33836657

RESUMO

BACKGROUND: The differentiation of bone marrow mesenchymal stem cells is a complex and dynamic process. The gene expression pattern and mechanism of different periods of adipogenic and osteogenic differentiation remain unclear. Additionally, the interaction between these two lineage determination requires further exploration. RESULTS: Five modules that were most significantly associated with osteogenic or adipogenic differentiation of BMSCs were selected for further investigation. Biological terms (e.g. ribosome biogenesis, TNF-α signalling pathway, glucose import and fatty acid metabolism) along with hub transcription factors (e.g. PPARG and YY1) and hub miRNAs (e.g. hsa-mir-26b-5p) were enriched in different modules. The expression pattern of 6 hub genes, ADIPOQ, FABP4, SLC7A5, SELPLG, BIRC3, and KLHL30 was validated by RT-qPCR. Finally, cell staining experiments extended the findings of bioinformatics analysis. CONCLUSION: This study identified the key genes, biological functions, and regulators of each time point of adipogenic and osteogenic differentiation of BMSCs and provided novel evidence and ideas for further research on the differentiation of BMSCs.


Assuntos
Células-Tronco Mesenquimais , MicroRNAs , Adipogenia/genética , Células da Medula Óssea , Diferenciação Celular/genética , Células Cultivadas , Humanos , Osteogênese/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...