Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
J Cereb Blood Flow Metab ; 42(1): 74-89, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34515549

RESUMO

A vascular insult occurring early in disease onset may initiate cognitive decline leading to dementia, while pharmacological and lifestyle interventions can prevent this progression. Mice with a selective, tamoxifen-inducible deletion of NF-κB essential modulator (Nemo) in brain endothelial cells were studied as a model of vascular cognitive impairment. Groups included NemoFl controls and three NemobeKO groups: One untreated, and two treated with simvastatin or exercise. Social preference and nesting were impaired in NemobeKO mice and were not countered by treatments. Cerebrovascular function was compromised in NemobeKO groups regardless of treatment, with decreased changes in sensory-evoked cerebral blood flow and total hemoglobin levels, and impaired endothelium-dependent vasodilation. NemobeKO mice had increased string vessel pathology, blood-brain barrier disruption, neuroinflammation, and reduced cortical somatostatin-containing interneurons. These alterations were reversed when endothelial function was recovered. Findings strongly suggest that damage to the cerebral endothelium can trigger pathologies associated with dementia and its functional integrity should be an effective target in future therapeutic efforts.


Assuntos
Encéfalo , Circulação Cerebrovascular , Disfunção Cognitiva , Endotélio Vascular , Interneurônios/metabolismo , Vasodilatação , Animais , Velocidade do Fluxo Sanguíneo , Encéfalo/irrigação sanguínea , Encéfalo/metabolismo , Encéfalo/fisiopatologia , Disfunção Cognitiva/genética , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/fisiopatologia , Disfunção Cognitiva/prevenção & controle , Endotélio Vascular/metabolismo , Endotélio Vascular/fisiopatologia , Feminino , Peptídeos e Proteínas de Sinalização Intracelular/deficiência , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Masculino , Camundongos , Camundongos Knockout , Somatostatina/metabolismo
3.
Br J Pharmacol ; 179(10): 2259-2274, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34820829

RESUMO

BACKGROUND AND PURPOSE: Inward rectifier potassium (KIR ) channels are key effectors of vasodilatation in neurovascular coupling (NVC). KIR channels expressed in cerebral endothelial cells (ECs) have been confirmed as essential modulators of NVC. Alzheimer's disease (AD) and cerebrovascular disease (CVD) impact on EC-KIR channel function, but whether oxidative stress or inflammation explains this impairment remains elusive. EXPERIMENTAL APPROACH: We evaluated KIR channel function in intact and EC-denuded pial arteries of wild-type (WT) and transgenic mice overexpressing a mutated form of the human amyloid precursor protein (APP mice, recapitulating amyloid ß-induced oxidative stress seen in AD) or a constitutively active form of TGF-ß1 (TGF mice, recapitulating inflammation seen in cerebrovascular pathology). The benefits of antioxidant (catalase) or anti-inflammatory (indomethacin) drugs also were investigated. Vascular and neuronal components of NVC were assessed in vivo. KEY RESULTS: Our findings show that (i) KIR channel-mediated maximal vasodilatation in APP and TGF mice reaches only 37% and 10%, respectively, of the response seen in WT mice; (ii) KIR channel dysfunction results from KIR 2.1 subunit impairment; (iii) about 50% of K+ -induced artery dilatation is mediated by EC-KIR channels; (iv) oxidative stress and inflammation impair KIR channel function, which can be restored by antioxidant and anti-inflammatory drugs; and (v) inflammation induces KIR 2.1 overexpression and impairs NVC in TGF mice. CONCLUSION AND IMPLICATIONS: Therapies targeting both oxidative stress and inflammation are necessary for full recovery of KIR 2.1 channel function in cerebrovascular pathology caused by AD and CVD.


Assuntos
Doença de Alzheimer , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides , Animais , Artérias Cerebrais/metabolismo , Circulação Cerebrovascular , Células Endoteliais/metabolismo , Endotélio/metabolismo , Camundongos , Camundongos Transgênicos , Potássio/uso terapêutico
5.
Front Physiol ; 12: 611984, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33584345

RESUMO

Preeclampsia is a common hypertensive disorder in pregnant women and whose causes and consequences have focused primarily on cardiovascular outcomes on the mother and offspring, often without taking into consideration the possible effects on the brain. One possible cause of preeclampsia has been attributed to alterations in the renin-angiotensin system, which has also been linked to cognitive decline. In this pilot study, we use a transgenic mouse model that chronically overexpresses human angiotensinogen and renin (R+A+ mice) that displayed characteristics of preeclampsia such as proteinuria during gestation. Offspring of these mothers as well as from control mothers were also examined. We were primarily interested in detecting whether cognitive deficits were present in the mothers and offspring in the long term and used a spatial learning and memory task as well as an object recognition task at three timepoints: 3, 8, and 12 months post-partum or post-natal, while measuring blood pressure and performing urine analysis after each timepoint. While we did not find significant deficits in preeclamptic mothers at the later timepoints, we did observe negative consequences in the pups of R+A+ mice that coincided with hemodynamic alterations whereby pups had higher whisker-evoked oxygenated hemoglobin levels and increased cerebral blood flow responses compared to control pups. Our study provides validation of this preeclampsia mouse model for future studies to decipher the underlying mechanisms of long-term cognitive deficits found in offspring.

6.
Auton Neurosci ; 217: 71-79, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30744905

RESUMO

Neuroimaging techniques, such as functional MRI, map brain activity through hemodynamic-based signals, and are invaluable diagnostic tools in several neurological disorders such as stroke and dementia. Hemodynamic signals are normally precisely related to the underlying neuronal activity through neurovascular coupling mechanisms that ensure the supply of blood, glucose and oxygen to neurons at work. The knowledge of neurovascular coupling has greatly advanced over the last 30 years, it involves multifaceted interactions between excitatory and inhibitory neurons, astrocytes, and the microvessels. While the tight relationship between blood flow and neuronal activity forms a fundamental brain function, whether neurovascular coupling mechanisms are reliable across physiological and pathological conditions has been questioned. In this review, we interrogate the relationship between blood flow and neuronal activity during activation of different brain pathways: a sensory stimulation driven by glutamate, and stimulation of neuromodulatory pathways driven by acetylcholine or noradrenaline, and we compare the underlying neurovascular coupling mechanisms. We further question if neurovascular coupling mechanisms are affected by changing brain states, as seen in behavioral conditions of sleep, wakefulness, attention and in pathological conditions. Finally, we provide a short overview of how alterations of the brain vasculature could compromise the reliability of neurovascular coupling. Overall, while neurovascular coupling requires activation of common signalling pathways, alternate unique cascades exist depending on the activated pathways. Further studies are needed to fully elucidate the alterations in neurovascular coupling across brain states and pathological conditions.


Assuntos
Córtex Cerebral/fisiologia , Transtornos Cerebrovasculares/fisiopatologia , Demência/fisiopatologia , Fenômenos Eletrofisiológicos/fisiologia , Acoplamento Neurovascular/fisiologia , Transdução de Sinais/fisiologia , Humanos
7.
Nat Commun ; 9(1): 3916, 2018 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-30254377

RESUMO

Alzheimer's disease (AD) is an intractable progressive neurodegenerative disease characterized by cognitive decline and dementia. An inflammatory neurodegenerative pathway, involving Caspase-1 activation, is associated with human age-dependent cognitive impairment and several classical AD brain pathologies. Here, we show that the nontoxic and blood-brain barrier permeable small molecule Caspase-1 inhibitor VX-765 dose-dependently reverses episodic and spatial memory impairment, and hyperactivity in the J20 mouse model of AD. Cessation of VX-765 results in the reappearance of memory deficits in the mice after 1 month and recommencement of treatment re-establishes normal cognition. VX-765 prevents progressive amyloid beta peptide deposition, reverses brain inflammation, and normalizes synaptophysin protein levels in mouse hippocampus. Consistent with these findings, Caspase-1 null J20 mice are protected from episodic and spatial memory deficits, neuroinflammation and Aß accumulation. These results provide in vivo proof of concept for Caspase-1 inhibition against AD cognitive deficits and pathologies.


Assuntos
Doença de Alzheimer/prevenção & controle , Caspase 1/metabolismo , Inibidores de Caspase/farmacologia , Transtornos Cognitivos/prevenção & controle , Modelos Animais de Doenças , Transtornos da Memória/prevenção & controle , Doença de Alzheimer/metabolismo , Doença de Alzheimer/fisiopatologia , Peptídeos beta-Amiloides/metabolismo , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/fisiopatologia , Caspase 1/genética , Cognição/efeitos dos fármacos , Cognição/fisiologia , Transtornos Cognitivos/metabolismo , Transtornos Cognitivos/fisiopatologia , Dipeptídeos/farmacologia , Humanos , Memória/efeitos dos fármacos , Memória/fisiologia , Transtornos da Memória/metabolismo , Transtornos da Memória/fisiopatologia , Camundongos Knockout , para-Aminobenzoatos/farmacologia
8.
Can J Physiol Pharmacol ; 96(5): 527-534, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29505736

RESUMO

Transgenic mice constitutively overexpressing the cytokine transforming growth factor-ß1 (TGF-ß1) (TGF mice) display cerebrovascular alterations as seen in Alzheimer's disease (AD) and vascular cognitive impairment and dementia (VCID), but no or only subtle cognitive deficits. TGF-ß1 may exert part of its deleterious effects through interactions with angiotensin II (AngII) type 1 receptor (AT1R) signaling pathways. We test such interactions in the brain and cerebral vessels of TGF mice by measuring cerebrovascular reactivity, levels of protein markers of vascular fibrosis, nitric oxide synthase activity, astrogliosis, and mnemonic performance in mice treated (6 months) with the AT1R blocker losartan (10 mg/kg per day) or the angiotensin converting enzyme inhibitor enalapril (3 mg/kg per day). Both treatments restored the severely impaired cerebrovascular reactivity to acetylcholine, calcitonin gene-related peptide, endothelin-1, and the baseline availability of nitric oxide in aged TGF mice. Losartan, but not enalapril, significantly reduced astrogliosis and cerebrovascular levels of profibrotic protein connective tissue growth factor while raising levels of antifibrotic enzyme matrix metallopeptidase-9. Memory was unaffected by aging and treatments. The results suggest a pivotal role for AngII in TGF-ß1-induced cerebrovascular dysfunction and neuroinflammation through AT1R-mediated mechanisms. Further, they suggest that AngII blockers could be appropriate against vasculopathies and astrogliosis associated with AD and VCID.


Assuntos
Encéfalo/irrigação sanguínea , Gliose/patologia , Gliose/fisiopatologia , Receptor Tipo 1 de Angiotensina/metabolismo , Transdução de Sinais , Fator de Crescimento Transformador beta1/metabolismo , Animais , Encéfalo/efeitos dos fármacos , Enalapril/farmacologia , Enalapril/uso terapêutico , Feminino , Fibrose , Gliose/metabolismo , Losartan/farmacologia , Losartan/uso terapêutico , Masculino , Camundongos , Camundongos Transgênicos , Transdução de Sinais/efeitos dos fármacos
9.
Mol Neurodegener ; 12(1): 22, 2017 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-28241839

RESUMO

BACKGROUND: The activation of the aspartate-specific cysteinyl protease, Caspase-6, is proposed as an early pathogenic event of Alzheimer disease (AD) and Huntington's disease. Caspase-6 inhibitors could be useful against these neurodegenerative diseases but most Caspase-6 inhibitors have been exclusively studied in vitro or show acute liver toxicity in humans. Here, we assessed vinyl sulfone small molecule peptide caspase inhibitors for potential use in vivo. METHODS: The IC50 of NWL vinyl sulfone small molecule caspase inhibitors were determined on Caspase-1 to 10, and Caspase-6-transfected human colon carcinoma HCT116 cells. Inhibition of Caspase-6-mediated axonal degeneration was assessed in serum-deprived or amyloid precursor protein-transfected primary human CNS neurons. Cellular toxicity was measured by phase contrast microscopy, mitochondrial and lactate dehydrogenase colorimetric activity assays, or flow cytometry. Caspase inhibition was measured by fluorogenic activity assays, fluorescence microscopy, and western blot analyses. The effect of inhibitors on age-dependent cognitive deficits in Caspase-6 transgenic mice was assessed by the novel object recognition task. Liquid chromatography coupled to tandem mass spectrometry assessed the blood-brain barrier permeability of inhibitors in Caspase-6 mice. RESULTS: Vinyl sulfone NWL-117 caspase inhibitor has a higher selectivity against Caspase-6, -4, -8, -9, and -10 whereas NWL-154 has higher selectivity against Caspase-6, -8, and -10. The half-maximal inhibitory concentrations (IC50) of NWL-117 and NWL-154 is 192 nM and 100 nM against Caspase-6 in vitro, and 4.82 µM and 3.63 µM in Caspase-6-transfected HCT116 cells, respectively. NWL inhibitors are not toxic to HCT116 cells or to human primary neurons. NWL-117 and NWL-154 inhibit serum deprivation-induced Caspase-6 activity and prevent amyloid precursor protein-mediated neurite degeneration in human primary CNS neurons. NWL-117 crosses the blood brain barrier and reverses age-dependent episodic memory deficits in Caspase-6 mice. CONCLUSIONS: NWL peptidic vinyl methyl sulfone inhibitors are potent, non-toxic, blood-brain barrier permeable, and irreversible caspase inhibitors with neuroprotective effects in HCT116 cells, in primary human CNS neurons, and in Caspase-6 mice. These results highlight the therapeutic potential of vinyl sulfone inhibitors as caspase inhibitors against neurodegenerative diseases and sanction additional work to improve their selectivity against different caspases.


Assuntos
Caspase 6/efeitos dos fármacos , Inibidores de Caspase/farmacologia , Degeneração Neural/patologia , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Sulfonas/farmacologia , Animais , Axônios/efeitos dos fármacos , Axônios/enzimologia , Western Blotting , Cromatografia Líquida , Transtornos Cognitivos/patologia , Modelos Animais de Doenças , Citometria de Fluxo , Humanos , Concentração Inibidora 50 , Camundongos , Camundongos Transgênicos , Microscopia de Fluorescência , Microscopia de Contraste de Fase , Neurônios/enzimologia , Espectrometria de Massas em Tandem
10.
Nat Neurosci ; 20(3): 393-395, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28135241

RESUMO

Contributions of glial cells to neuroenergetics have been the focus of extensive debate. Here we provide positron emission tomography evidence that activation of astrocytic glutamate transport via the excitatory amino acid transporter GLT-1 triggers widespread but graded glucose uptake in the rodent brain. Our results highlight the need for a reevaluation of the interpretation of [18F]FDG positron emission tomography data, whereby astrocytes would be recognized as contributing to the [18F]FDG signal.


Assuntos
Astrócitos/metabolismo , Transportador 1 de Aminoácido Excitatório/fisiologia , Fluordesoxiglucose F18/metabolismo , Ácido Glutâmico/metabolismo , Animais , Transporte Biológico , Encéfalo/irrigação sanguínea , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Ceftriaxona/farmacologia , Células Cultivadas , Transportador 1 de Aminoácido Excitatório/agonistas , Neuroimagem Funcional , Locomoção/efeitos dos fármacos , Masculino , Tomografia por Emissão de Pósitrons , Ratos , Vibrissas/fisiologia
11.
J Neurosci ; 37(6): 1518-1531, 2017 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-28069927

RESUMO

Brain imaging techniques that use vascular signals to map changes in neuronal activity rely on the coupling between electrophysiology and hemodynamics, a phenomenon referred to as "neurovascular coupling" (NVC). It is unknown whether this relationship remains reliable under altered brain states associated with acetylcholine (ACh) levels, such as attention and arousal and in pathological conditions such as Alzheimer's disease. We therefore assessed the effects of varying ACh tone on whisker-evoked NVC responses in rat barrel cortex, measured by cerebral blood flow (CBF) and neurophysiological recordings (local field potentials, LFPs). We found that acutely enhanced ACh tone significantly potentiated whisker-evoked CBF responses through muscarinic ACh receptors and concurrently facilitated neuronal responses, as illustrated by increases in the amplitude and power in high frequencies of the evoked LFPs. However, the cellular identity of the activated neuronal network within the responsive barrel was unchanged, as characterized by c-Fos upregulation in pyramidal cells and GABA interneurons coexpressing vasoactive intestinal polypeptide. In contrast, chronic ACh deprivation hindered whisker-evoked CBF responses and the amplitude and power in most frequency bands of the evoked LFPs and reduced the rostrocaudal extent and area of the activated barrel without altering its identity. Correlations between LFP power and CBF, used to estimate NVC, were enhanced under high ACh tone and disturbed significantly by ACh depletion. We conclude that ACh is not only a facilitator but also a prerequisite for the full expression of sensory-evoked NVC responses, indicating that ACh may alter the fidelity of hemodynamic signals in assessing changes in evoked neuronal activity.SIGNIFICANCE STATEMENT Neurovascular coupling, defined as the tight relationship between activated neurons and hemodynamic responses, is a fundamental brain function that underlies hemodynamic-based functional brain imaging techniques. However, the impact of altered brain states on this relationship is largely unknown. We therefore investigated how acetylcholine (ACh), known to drive brain states of attention and arousal and to be deficient in pathologies such as Alzheimer's disease, would alter neurovascular coupling responses to sensory stimulation. Whereas acutely increased ACh enhanced neuronal responses and the resulting hemodynamic signals, chronic loss of cholinergic input resulted in dramatic impairments in both types of sensory-evoked signals. We conclude that ACh is not only a potent modulator but also a requirement for the full expression of sensory-evoked neurovascular coupling responses.


Assuntos
Acetilcolina/fisiologia , Circulação Cerebrovascular/fisiologia , Acoplamento Neurovascular/fisiologia , Receptores Nicotínicos/fisiologia , Vibrissas/fisiologia , Animais , Córtex Cerebral/irrigação sanguínea , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/fisiologia , Circulação Cerebrovascular/efeitos dos fármacos , Masculino , Acoplamento Neurovascular/efeitos dos fármacos , Antagonistas Nicotínicos/farmacologia , Estimulação Física/métodos , Ratos , Ratos Sprague-Dawley , Vibrissas/efeitos dos fármacos
12.
J Neurosci ; 35(34): 11791-810, 2015 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-26311764

RESUMO

Vasodilatory prostaglandins play a key role in neurovascular coupling (NVC), the tight link between neuronal activity and local cerebral blood flow, but their precise identity, cellular origin and the receptors involved remain unclear. Here we show in rats that NMDA-induced vasodilation and hemodynamic responses evoked by whisker stimulation involve cyclooxygenase-2 (COX-2) activity and activation of the prostaglandin E2 (PgE2) receptors EP2 and EP4. Using liquid chromatography-electrospray ionization-tandem mass spectrometry, we demonstrate that PgE2 is released by NMDA in cortical slices. The characterization of PgE2 producing cells by immunohistochemistry and single-cell reverse transcriptase-PCR revealed that pyramidal cells and not astrocytes are the main cell type equipped for PgE2 synthesis, one third expressing COX-2 systematically associated with a PgE2 synthase. Consistent with their central role in NVC, in vivo optogenetic stimulation of pyramidal cells evoked COX-2-dependent hyperemic responses in mice. These observations identify PgE2 as the main prostaglandin mediating sensory-evoked NVC, pyramidal cells as their principal source and vasodilatory EP2 and EP4 receptors as their targets. SIGNIFICANCE STATEMENT: Brain function critically depends on a permanent spatiotemporal match between neuronal activity and blood supply, known as NVC. In the cerebral cortex, prostaglandins are major contributors to NVC. However, their biochemical identity remains elusive and their cellular origins are still under debate. Although astrocytes can induce vasodilations through the release of prostaglandins, the recruitment of this pathway during sensory stimulation is questioned. Using multidisciplinary approaches from single-cell reverse transcriptase-PCR, mass spectrometry, to ex vivo and in vivo pharmacology and optogenetics, we provide compelling evidence identifying PgE2 as the main prostaglandin in NVC, pyramidal neurons as their main cellular source and the vasodilatory EP2 and EP4 receptors as their main targets. These original findings will certainly change the current view of NVC.


Assuntos
Córtex Cerebral/metabolismo , Ciclo-Oxigenase 2/metabolismo , Dinoprostona/metabolismo , Células Piramidais/metabolismo , Vasodilatação/fisiologia , Animais , Feminino , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Técnicas de Cultura de Órgãos , Ratos , Ratos Sprague-Dawley , Ratos Wistar
13.
Neurobiol Dis ; 68: 126-36, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24807206

RESUMO

Angiotensin II (AngII) receptor blockers that bind selectively AngII type 1 (AT1) receptors may protect from Alzheimer's disease (AD). We studied the ability of the AT1 receptor antagonist losartan to cure or prevent AD hallmarks in aged (~18months at endpoint, 3months treatment) or adult (~12months at endpoint, 10months treatment) human amyloid precursor protein (APP) transgenic mice. We tested learning and memory with the Morris water maze, and evaluated neurometabolic and neurovascular coupling using [(18)F]fluoro-2-deoxy-D-glucose-PET and laser Doppler flowmetry responses to whisker stimulation. Cerebrovascular reactivity was assessed with on-line videomicroscopy. We measured protein levels of oxidative stress enzymes (superoxide dismutases SOD1, SOD2 and NADPH oxidase subunit p67phox), and quantified soluble and deposited amyloid-ß (Aß) peptide, glial fibrillary acidic protein (GFAP), AngII receptors AT1 and AT2, angiotensin IV receptor AT4, and cortical cholinergic innervation. In aged APP mice, losartan did not improve learning but it consolidated memory acquisition and recall, and rescued neurovascular and neurometabolic coupling and cerebrovascular dilatory capacity. Losartan normalized cerebrovascular p67phox and SOD2 protein levels and up-regulated those of SOD1. Losartan attenuated astrogliosis, normalized AT1 and AT4 receptor levels, but failed to rescue the cholinergic deficit and the Aß pathology. Given preventively, losartan protected cognitive function, cerebrovascular reactivity, and AT4 receptor levels. Like in aged APP mice, these benefits occurred without a decrease in soluble Aß species or plaque load. We conclude that losartan exerts potent preventive and restorative effects on AD hallmarks, possibly by mitigating AT1-initiated oxidative stress and normalizing memory-related AT4 receptors.


Assuntos
Doença de Alzheimer/complicações , Bloqueadores do Receptor Tipo 1 de Angiotensina II/uso terapêutico , Circulação Cerebrovascular/efeitos dos fármacos , Transtornos Cognitivos/tratamento farmacológico , Transtornos Cognitivos/etiologia , Losartan/uso terapêutico , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , Precursor de Proteína beta-Amiloide/genética , Bloqueadores do Receptor Tipo 1 de Angiotensina II/farmacologia , Animais , Arginina/análogos & derivados , Arginina/farmacologia , Pressão Sanguínea/efeitos dos fármacos , Pressão Sanguínea/genética , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Transtornos Cognitivos/patologia , Modelos Animais de Doenças , Endotelina-1/farmacologia , Inibidores Enzimáticos/farmacologia , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Losartan/farmacologia , Masculino , Camundongos , Camundongos Transgênicos , Mutação/genética
14.
J Neurosci ; 32(14): 4705-15, 2012 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-22492027

RESUMO

Alzheimer's disease (AD) is now established as a progressive compromise not only of the neurons but also of the cerebral vasculature. Increasing evidence also indicates that cerebrovascular dysfunction may be a key or an aggravating pathogenic factor in AD, emphasizing the importance to properly control this deficit when aiming for effective therapy. Here, we report that simvastatin (3-6 months, 40 mg/kg/d) completely rescued cerebrovascular reactivity, basal endothelial nitric oxide synthesis, and activity-induced neurometabolic and neurovascular coupling in adult (6 months) and aged (12 months) transgenic mice overexpressing the Swedish and Indiana mutations of the human amyloid precursor protein (AD mice). Remarkably, simvastatin fully restored short- and long-term memory in adult, but not in aged AD mice. These beneficial effects occurred without any decreasing effect of simvastatin on brain amyloid-ß (Aß) levels or plaque load. However, in AD mice with recovered memory, protein levels of the learning- and memory-related immediate early genes c-Fos and Egr-1 were normalized or upregulated in hippocampal CA1 neurons, indicative of restored neuronal function. In contrast, the levels of phospholipase A2, enkephalin, PSD-95, synaptophysin, or glutamate NMDA receptor subunit type 2B were either unaltered in AD mice or unaffected by treatment. These findings disclose new sites of action for statins against Aß-induced neuronal and cerebrovascular deficits that could be predictive of therapeutic benefit in AD patients. They further indicate that simvastatin and, possibly, other brain penetrant statins bear high therapeutic promise in early AD and in patients with vascular diseases who are at risk of developing AD.


Assuntos
Envelhecimento/efeitos dos fármacos , Doença de Alzheimer/tratamento farmacológico , Transtornos Cerebrovasculares/tratamento farmacológico , Transtornos da Memória/tratamento farmacológico , Sinvastatina/uso terapêutico , Envelhecimento/fisiologia , Doença de Alzheimer/fisiopatologia , Animais , Circulação Cerebrovascular/efeitos dos fármacos , Circulação Cerebrovascular/fisiologia , Transtornos Cerebrovasculares/fisiopatologia , Feminino , Humanos , Masculino , Transtornos da Memória/fisiopatologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Sinvastatina/farmacologia
15.
J Cereb Blood Flow Metab ; 32(5): 896-906, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22293985

RESUMO

Activation of the basal forebrain (BF), the primary source of acetylcholine (ACh) in the cortex, broadly increases cortical cerebral blood flow (CBF), a response downstream to ACh release. Although endothelial nitric oxide and cholinoceptive GABA (γ-aminobutyric acid) interneurons have been implicated, little is known about the role of pyramidal cells in this response and their possible interaction with astrocytes. Using c-Fos immunohistochemistry as a marker of neuronal activation and laser-Doppler flowmetry, we measured changes in CBF evoked by BF stimulation following pharmacological blockade of c-Fos-identified excitatory pathways, astroglial metabolism, or vasoactive mediators. Pyramidal cells including those that express cyclooxygenase-2 (COX-2) displayed c-Fos upregulation. Glutamate acting via NMDA, AMPA, and mGlu receptors was involved in the evoked CBF response, NMDA receptors having the highest contribution (~33%). In contrast, nonselective and selective COX-2 inhibition did not affect the evoked CBF response (+0.4% to 6.9%, ns). The metabolic gliotoxins fluorocitrate and fluoroacetate, the cytochrome P450 epoxygenase inhibitor MS-PPOH and the selective epoxyeicosatrienoic acids (EETs) antagonist 14,15-epoxyeicosa-5(Z)-enoic acid (14,15-EEZE) all blocked the evoked CBF response by ~50%. Together, the data demonstrate that the hyperemic response to BF stimulation is largely mediated by glutamate released from activated pyramidal cells and by vasoactive EETs, likely originating from activated astrocytes.


Assuntos
Ácido 8,11,14-Eicosatrienoico/análogos & derivados , Potenciais Evocados/fisiologia , Células Piramidais/metabolismo , Ácido 8,11,14-Eicosatrienoico/antagonistas & inibidores , Ácido 8,11,14-Eicosatrienoico/metabolismo , Acetilcolina/metabolismo , Amidas/farmacologia , Animais , Astrócitos/citologia , Astrócitos/metabolismo , Velocidade do Fluxo Sanguíneo/efeitos dos fármacos , Velocidade do Fluxo Sanguíneo/fisiologia , Circulação Cerebrovascular/efeitos dos fármacos , Circulação Cerebrovascular/fisiologia , Citratos/toxicidade , Ciclo-Oxigenase 2/metabolismo , Potenciais Evocados/efeitos dos fármacos , Fluoracetatos/toxicidade , Regulação da Expressão Gênica/efeitos dos fármacos , Masculino , Óxido Nítrico/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Células Piramidais/citologia , Ratos , Ratos Sprague-Dawley , Receptores de N-Metil-D-Aspartato/metabolismo , Ácido gama-Aminobutírico/metabolismo
16.
J Neurosci ; 31(27): 9836-47, 2011 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-21734275

RESUMO

The whisker-to-barrel cortex is widely used to study neurovascular coupling, but the cellular basis that underlies the perfusion changes is still largely unknown. Here, we identified neurons recruited by whisker stimulation in the rat somatosensory cortex using double immunohistochemistry for c-Fos and markers of glutamatergic and GABAergic neurons, and investigated in vivo their contribution along with that of astrocytes in the evoked perfusion response. Whisker stimulation elicited cerebral blood flow (CBF) increases concomitantly with c-Fos upregulation in pyramidal cells that coexpressed cyclooxygenase-2 (COX-2) and GABA interneurons that coexpressed vasoactive intestinal polypeptide and/or choline acetyltransferase, but not somatostatin or parvalbumin. The evoked CBF response was decreased by blockade of NMDA (MK-801, -37%), group I metabotropic glutamate (MPEP+LY367385, -40%), and GABA-A (picrotoxin, -31%) receptors, but not by GABA-B, VIP, or muscarinic receptor antagonism. Picrotoxin decreased stimulus-induced somatosensory evoked potentials and CBF responses. Combined blockade of GABA-A and NMDA receptors yielded an additive decreasing effect (-61%) of the evoked CBF compared with each antagonist alone, demonstrating cooperation of both excitatory and inhibitory systems in the hyperemic response. Blockade of prostanoid synthesis by inhibiting COX-2 (indomethacin, NS-398), expressed by ∼40% of pyramidal cells but not by astrocytes, impaired the CBF response (-50%). The hyperemic response was also reduced (-40%) after inhibition of astroglial oxidative metabolism or epoxyeicosatrienoic acids synthesis. These results demonstrate that changes in pyramidal cell activity, sculpted by specific types of inhibitory GABA interneurons, drive the CBF response to whisker stimulation and, further, that metabolically active astrocytes are also required.


Assuntos
Circulação Cerebrovascular/fisiologia , Neurogênese/fisiologia , Células Piramidais/fisiologia , Córtex Somatossensorial/citologia , Vibrissas/inervação , Vias Aferentes/fisiologia , Análise de Variância , Animais , Circulação Cerebrovascular/efeitos dos fármacos , Antagonistas Colinérgicos/farmacologia , Ciclo-Oxigenase 1/metabolismo , Ciclo-Oxigenase 2/metabolismo , Interações Medicamentosas , Eletroencefalografia , Inibidores Enzimáticos , Potenciais Somatossensoriais Evocados/efeitos dos fármacos , Agonistas de Aminoácidos Excitatórios/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Lateralidade Funcional , Antagonistas GABAérgicos/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Proteína Glial Fibrilar Ácida/metabolismo , Fluxometria por Laser-Doppler/métodos , Masculino , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Inibição Neural/efeitos dos fármacos , Inibição Neural/fisiologia , Neurogênese/efeitos dos fármacos , Compostos Organofosforados/farmacologia , Técnicas de Patch-Clamp/métodos , Estimulação Física/métodos , Picrotoxina/farmacologia , Proteínas Proto-Oncogênicas c-fos/genética , Proteínas Proto-Oncogênicas c-fos/metabolismo , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Escopolamina/farmacologia , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/fisiologia
17.
Am J Pathol ; 177(6): 3071-80, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21088218

RESUMO

High brain levels of amyloid-ß (Aß) and transforming growth factor-ß1 (TGF-ß1) have been implicated in the cognitive and cerebrovascular alterations of Alzheimer's disease (AD). We sought to investigate the impact of combined increases in Aß and TGF-ß1 on cerebrovascular, neuronal, and mnemonic function using transgenic mice overproducing these peptides (A/T mice). In particular, we measured cerebrovascular reactivity, evoked cerebral blood flow and glucose uptake during brain activation, cholinergic status, and spatial memory, along with cerebrovascular fibrosis, amyloidosis, and astrogliosis, and their evolution with age. An assessment of perfusion and metabolic responses was considered timely, given ongoing efforts for their validation as AD biomarkers. Relative to wild-type littermates, A/T mice displayed an early progressive decline in cerebrovascular dilatory ability, preserved contractility, and reduction in constitutive nitric oxide synthesis that establishes resting vessel tone. Altered levels of vasodilator-synthesizing enzymes and fibrotic proteins, resistance to antioxidant treatment, and unchanged levels of the antioxidant enzyme, superoxide dismutase-2, accompanied these impairments. A/T mice featured deficient neurovascular and neurometabolic coupling to whisker stimulation, cholinergic denervation, cerebral and cerebrovascular Aß deposition, astrocyte activation, and impaired Morris water maze performance, which gained severity with age. The combined Aß- and TGF-ß1-driven pathology recapitulates salient cerebrovascular, neuronal, and cognitive AD landmarks and yields a versatile model toward highly anticipated diagnostic and therapeutic tools for patients featuring Aß and TGF-ß1 increments.


Assuntos
Doença de Alzheimer/fisiopatologia , Doença de Alzheimer/psicologia , Precursor de Proteína beta-Amiloide/genética , Circulação Cerebrovascular/fisiologia , Cognição/fisiologia , Fator de Crescimento Transformador beta1/genética , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Biomarcadores/análise , Circulação Cerebrovascular/genética , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Aprendizagem em Labirinto/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Natação , Fator de Crescimento Transformador beta1/metabolismo , Estudos de Validação como Assunto
18.
J Neurosci ; 28(37): 9287-96, 2008 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-18784309

RESUMO

Accumulating evidence suggests that cerebrovascular dysfunction is an important factor in the pathogenesis of Alzheimer's disease (AD). Using aged ( approximately 16 months) amyloid precursor protein (APP) transgenic mice that exhibit increased production of the amyloid-beta (Abeta) peptide and severe cerebrovascular and memory deficits, we examined the capacity of in vivo treatments with the antioxidants N-acetyl-L-cysteine (NAC) and tempol, or the peroxisome proliferator-activated receptor gamma agonist pioglitazone to rescue cerebrovascular function and selected markers of AD neuropathology. Additionally, we tested the ability of pioglitazone to normalize the impaired increases in cerebral blood flow (CBF) and glucose uptake (CGU) induced by whisker stimulation, and to reverse spatial memory deficits in the Morris water maze. All compounds fully restored cerebrovascular reactivity of isolated cerebral arteries concomitantly with changes in proteins regulating oxidative stress, without reducing brain Abeta levels or Abeta plaque load. Pioglitazone, but not NAC, significantly attenuated astroglial activation and improved, albeit nonsignificantly, the reduced cortical cholinergic innervation. Furthermore, pioglitazone completely normalized the CBF and CGU responses to increased neuronal activity, but it failed to improve spatial memory. Our results are the first to demonstrate that late pharmacological intervention with pioglitazone not only overcomes cerebrovascular dysfunction and altered neurometabolic coupling in aged APP mice, but also counteracts cerebral oxidative stress, glial activation, and, partly, cholinergic denervation. Although early or combined therapy may be warranted to improve cognition, these findings unequivocally point to pioglitazone as a most promising strategy for restoring cerebrovascular function and counteracting several AD markers detrimental to neuronal function.


Assuntos
Acetilcisteína/uso terapêutico , Envelhecimento , Antioxidantes/uso terapêutico , Transtornos Cerebrovasculares/tratamento farmacológico , Hipoglicemiantes/uso terapêutico , Tiazolidinedionas/uso terapêutico , Acetilcolina/metabolismo , Doença de Alzheimer/complicações , Doença de Alzheimer/genética , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Comportamento Animal/efeitos dos fármacos , Transtornos Cerebrovasculares/etiologia , Transtornos Cerebrovasculares/genética , Modelos Animais de Doenças , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Memória/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mutação/genética , Proteínas do Tecido Nervoso/metabolismo , Óxido Nítrico Sintase/metabolismo , PPAR gama/agonistas , Fragmentos de Peptídeos/metabolismo , Pioglitazona , Superóxido Dismutase/metabolismo
19.
Exp Neurol ; 210(2): 577-84, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18191840

RESUMO

Urotensin-II (U-II) is a cyclic peptide identified recently in many mammalian species including man. U-II and its receptor are expressed in the central nervous system, in the cardiovascular system and in other peripheral tissues. Although this peptide has been reported initially to be a potent vasoconstrictor, increasing evidence shows that its vascular actions strongly depend on species and vascular beds. Here we analyzed the effects of U-II administration on cerebral blood flow (CBF) under physiological conditions and following cerebral ischemia in rats. Although intravenous injection of U-II had minimal effects on CBF as measured by the technique of laser Doppler flowmetry, its administration (10 nmol) into the lateral cerebral ventricle induced gradual and long lasting increase in CBF (+61% at 1 h post-injection, p<0.05). These U-II-mediated CBF increases were not related to the transient systemic pressor actions of the peptide and were reduced by nitric oxide synthase inhibition (61 vs 17%, p<0.05). Intracerebroventricular administration of U-II following the induction of cerebral ischemia, failed to alter residual CBF in the affected cerebral hemisphere. Nonetheless, following reperfusion (90 min after ischemia), U-II-treated animals displayed a remarkable hyperperfusion compared to vehicle-treated rats (+168%, p<0.05). The volume of infarction was significantly increased in U-II-treated rats (+40%, p<0.05). These results provide the first evidence that U-II increases cerebral blood flow when administered into the cerebral ventricle and exacerbates brain damage following an ischemic insult.


Assuntos
Anestesia , Circulação Cerebrovascular/efeitos dos fármacos , Isquemia/tratamento farmacológico , Urotensinas/uso terapêutico , Análise de Variância , Animais , Pressão Sanguínea/efeitos dos fármacos , Infarto Encefálico/etiologia , Infarto Encefálico/prevenção & controle , Modelos Animais de Doenças , Isquemia/fisiopatologia , Fluxometria por Laser-Doppler/métodos , Masculino , Ratos , Ratos Sprague-Dawley , Fatores de Tempo
20.
Stroke ; 39(2): 448-54, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18174487

RESUMO

BACKGROUND AND PURPOSE: The study aim was to assess the effects of magnesium sulfate (MgSO(4)) administration on white matter damage in vivo in spontaneously hypertensive rats. METHODS: The left internal capsule was lesioned by a local injection of endothelin-1 (ET-1; 200 pmol) in adult spontaneously hypertensive rats. MgSO(4) was administered (300 mg/kg SC) 30 minutes before injection of ET-1, plus 200 mg/kg every hour thereafter for 4 hours. Infarct size was measured by T2-weighted magnetic resonance imaging (day 2) and histology (day 11), and functional recovery was assessed on days 3 and 10 by the cylinder and walking-ladder tests. RESULTS: ET-1 application induced a small, localized lesion within the internal capsule. Despite reducing blood pressure, MgSO(4) did not significantly influence infarct volume (by magnetic resonance imaging: median, 2.1 mm(3); interquartile range, 1.3 to 3.8, vs 1.6 mm(3) and 1.2 to 2.1, for the vehicle-treated group; by histology: 0.3 mm(3) and 0.2 to 0.9 vs 0.3 mm(3) and 0.2 to 0.5, respectively). Significant forelimb and hindlimb motor deficits were evident in the vehicle-treated group as late as day 10. These impairments were significantly ameliorated by MgSO(4) in both cylinder (left forelimb use, P<0.01 and both-forelimb use, P<0.03 vs vehicle) and walking-ladder (right hindlimb score, P<0.02 vs vehicle) tests. CONCLUSIONS: ET-1-induced internal capsule ischemia in spontaneously hypertensive rats represents a good model of lacunar infarct with small lesion size, minimal adverse effects, and a measurable motor deficit. Despite inducing mild hypotension, MgSO(4) did not significantly influence infarct size but reduced motor deficits, supporting its potential utility for the treatment of lacunar infarct.


Assuntos
Anticonvulsivantes/farmacologia , Infarto Encefálico/tratamento farmacológico , Isquemia Encefálica/tratamento farmacológico , Hipertensão/complicações , Cápsula Interna/efeitos dos fármacos , Sulfato de Magnésio/farmacologia , Animais , Pressão Sanguínea/efeitos dos fármacos , Infarto Encefálico/induzido quimicamente , Infarto Encefálico/patologia , Isquemia Encefálica/induzido quimicamente , Isquemia Encefálica/patologia , Modelos Animais de Doenças , Endotelina-1 , Cápsula Interna/patologia , Magnésio/sangue , Masculino , Atividade Motora/efeitos dos fármacos , Fibras Nervosas Mielinizadas/efeitos dos fármacos , Fibras Nervosas Mielinizadas/patologia , Ratos , Ratos Endogâmicos SHR , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...