Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 280(13): 12310-5, 2005 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-15677467

RESUMO

The extracellular matrix in most tissues is characterized by progressive age-related stiffening and loss of proteolytic digestibility that are accelerated in diabetes and can be duplicated by the nonenzymatic reaction of reducing sugars and extracellular matrix proteins. However, most cross-links of the Maillard reaction described so far are present in quantities too low to account for these changes. Here we have determined in human skin and glomerular basement membrane (GBM) collagen the levels of the recently discovered lysine-arginine cross-links derived from glucose, methylglyoxal, glyoxal, and 3-deoxyglucosone, i.e. glucosepane, MODIC, GODIC, and DOGDIC, respectively. Insoluble preparations of skin collagen (n = 110) and glomerular basement membrane (GBM, n = 28) were enzymatically digested, and levels were measured by isotope dilution technique using liquid chromatography/mass spectrometry. In skin, all cross-links increased with age (p < 0.0001) except DOGDIC (p = 0.34). In nondiabetic controls, levels at 90 years were 2000, 30, and 15 pmol/mg for glucosepane, MODIC, and GODIC, respectively. Diabetes, but not renal failure, increased glucosepane to 5000 pmol/mg (p < 0.0001), and for all others, increased it to <60 pmol/mg (p < 0.01). In GBMs, glucosepane reached up to 500 pmol/mg of collagen and was increased in diabetes (p < 0.0001) but not old age. In conclusion, glucosepane is the single major cross-link of the senescent extracellular matrix discovered so far, accounting for up to >120 mole% of triple helical collagen modification in diabetes. Its presence in high quantities may contribute to a number of structural and cell matrix dysfunctions observed in aging and diabetes.


Assuntos
Azepinas/química , Azepinas/metabolismo , Colágeno/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Matriz Extracelular/metabolismo , Lisina/análogos & derivados , Lisina/química , Lisina/metabolismo , Pele/metabolismo , Adolescente , Adulto , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Arginina/química , Membrana Basal/metabolismo , Senescência Celular , Cromatografia Líquida de Alta Pressão , Colágeno/química , Reagentes de Ligações Cruzadas/farmacologia , Feminino , Humanos , Imidazóis/metabolismo , Falência Renal Crônica/metabolismo , Glomérulos Renais/metabolismo , Masculino , Pessoa de Meia-Idade , Modelos Químicos , Ligação Proteica , Análise de Regressão , Insuficiência Renal/metabolismo , Fatores de Tempo
2.
Diabetes ; 54(2): 517-26, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15677510

RESUMO

We tested the hypothesis that green tea prevents diabetes-related tissue dysfunctions attributable to oxidation. Diabetic rats were treated daily with tap water, vitamins C and E, or fresh Japanese green tea extract. After 12 months, body weights were decreased, whereas glycated lysine in aorta, tendon, and plasma were increased by diabetes (P < 0.001) but unaffected by treatment. Erythrocyte glutathione and plasma hydroperoxides were improved by the vitamins (P < 0.05) and green tea (P < 0.001). Retinal superoxide production, acellular capillaries, and pericyte ghosts were increased by diabetes (P < 0.001) and improved by green tea and the vitamins (P variable). Lens crystallin fluorescence at 370/440 nm was ameliorated by green tea (P < 0.05) but not the vitamins. Marginal effects on nephropathy parameters were noted. However, suppressed renal mitochondrial NADH-linked ADP-dependent and dinitrophenol-dependent respiration and complex III activity were improved by green tea (P variable). Green tea also suppressed the methylglyoxal hydroimidazolone immunostaining of a 28-kDa mitochondrial protein. Surprising, glycoxidation in tendon, aorta, and plasma was either worsened or not significantly improved by the vitamins and green tea. Glucosepane cross-links were increased by diabetes (P < 0.001), and green tea worsened total cross-linking. In conclusion, green tea and antioxidant vitamins improved several diabetes-related cellular dysfunctions but worsened matrix glycoxidation in selected tissues, suggesting that antioxidant treatment tilts the balance from oxidative to carbonyl stress in the extracellular compartment.


Assuntos
Antioxidantes/uso terapêutico , Ácido Ascórbico/uso terapêutico , Camellia sinensis , Colágeno/metabolismo , Diabetes Mellitus Experimental/fisiopatologia , Nefropatias Diabéticas/patologia , Retinopatia Diabética/tratamento farmacológico , Fitoterapia , Chá , Vitamina E/uso terapêutico , Animais , Glicemia/metabolismo , Peso Corporal , Colágeno/química , Colágeno/efeitos dos fármacos , Reagentes de Ligações Cruzadas , Diabetes Mellitus Experimental/patologia , Comportamento Alimentar/efeitos dos fármacos , Produtos Finais de Glicação Avançada/metabolismo , Técnicas In Vitro , Masculino , Mitocôndrias/patologia , Consumo de Oxigênio/efeitos dos fármacos , Ratos , Ratos Endogâmicos Lew
3.
Carbohydr Res ; 339(9): 1609-18, 2004 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-15183735

RESUMO

Covalently cross-linked proteins are among the major modifications caused by the advanced Maillard reaction. In the present study, the formation pathway of the dideoxyosone N6-(2,3-dihydroxy-5,6-dioxohexyl)-L-lysine is shown. To elucidate the formation of this glucose-derived dideoxyosone D-lactose (O-beta-D-galp-(1-->4)-D-glcp) and D-glucose-6-phosphate were incubated with lysine in the presence of the trapping reagent o-phenylenediamine (OPD). Synthesis and unequivocal structural characterization were reported for the quinoxalines of the dideoxyosones N6-(5,6-dihydroxy-2,3-dioxohexyl)-L-lysine and N6-(2,3-dihydroxy-4,5-dioxohexyl)-L-lysine, respectively. Additionally, dicarbonyl compounds derived from D-erythrose, D-glycero-D-mannoheptose, and D-gluco-L-talooctose were synthesized and structurally characterized.


Assuntos
Reagentes de Ligações Cruzadas/química , Glucose-6-Fosfato/química , Lactose/química , Lisina/química , Reação de Maillard , Sequência de Carboidratos , Cromatografia Líquida de Alta Pressão , Produtos Finais de Glicação Avançada/química , Hexoses/química , Hexoses/isolamento & purificação , Lisina/análogos & derivados , Espectroscopia de Ressonância Magnética , Manose/análogos & derivados , Manose/química , Espectrometria de Massas , Estrutura Molecular , Fenilenodiaminas/química , Teoria Quântica , Quinoxalinas/síntese química , Quinoxalinas/química , Espectrometria de Massas por Ionização por Electrospray , Tetroses/química
4.
Carbohydr Res ; 339(3): 483-91, 2004 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-15013385

RESUMO

Covalently cross-linked proteins are among the major modifications caused by the advanced Maillard reaction. So far, the chemical nature of these aggregates is largely unknown. L-dehydroascorbic acid (DHA, 5), the oxidation product of L-ascorbic acid (vitamin C), is known as a potent glycation agent. Identification is reported for the lysine-arginine cross-links N6-[2-[(4-amino-4-carboxybutyl)amino]-5-(2-hydroxyethyl)-3,5-dihydro-4H-imidazol-4-ylidene]-L-lysine (9), N6-[2-[(4-amino-4-carboxybutyl)amino]-5-(1,2-dihydroxyethyl)-3,5-dihydro-4H-imidazol-4-ylidene]-L-lysine (11), and N6-[2-[(4-amino-4-carboxybutyl)amino]-5-[(1S,2S)-1,2,3-trihydroxypropyl]-3,5-dihydro-4H-imidazol-4-ylidene]-L-lysine (13). The formation pathways could be established starting from dehydroascorbic acid (5), the degradation products 1,3,4-trihydroxybutan-2-one (7, L-erythrulose), 3,4-dihydroxy-2-oxobutanal (10, L-threosone), and L-threo-pentos-2-ulose (12, L-xylosone) were proven as precursors of the lysine-arginine cross-links 9, 11, and 13. Products 9 and 11 were synthesized starting from DHA 5, compound N6-[2-[(4-amino-4-carboxybutyl)amino]-5-[(1S,2R)-1,2,3-trihydroxypropyl]-3,5-dihydro-4H-imidazol-4-ylidene]-L-lysine (16) via the precursor D-erythro-pentos-2-ulose (15). The present study revealed that the modification of lysine and arginine side chains by DHA 5 is a complex process and could involve a number of reactive carbonyl species.


Assuntos
Arginina/química , Ácido Desidroascórbico/química , Lisina/química , Reagentes de Ligações Cruzadas/química , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Tetroses/química
5.
Carbohydr Res ; 339(3): 705-14, 2004 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-15013409

RESUMO

Besides the formation of the aminotriazine N6-[4-(3-amino-1,2,4-triazin-5-yl)-2,3-dihydroxybutyl]-L-lysine, the reaction of [1-13C]D-glucose with lysine and aminoguanidine leads to the generation of 6-[2-([[amino(imino)methyl]hydrazono]methyl)pyridinium-1-yl]-L-norleucine (14-13C1). The dideoxyosone N6-(2,3-dihydroxy-5,6-dioxohexyl)-L-lysine was shown to be a precursor in the formation of 14-13C1, which proceeds via the reactive carbonyl intermediate 6-(2-formylpyridinium-1-yl)-L-norleucine (13-13C1). In order to study the reactivity of 13-13C1, the model compound 1-butyl-2-formylpyridinium (18) was prepared in a two-step procedure starting from 2-pyridinemethanol. The reaction of the pyridinium-carbaldehyde 18 with L-lysine yielded the Strecker analogous degradation product 2-(aminomethyl)-1-butylpyridinium and another compound, which was shown to be as 1-butyl-2-[(2-oxopiperidin-3-ylidene)methyl]pyridinium. Reaction of 18 with the C-H acidic 4-hydroxy-5-methylfuran-3(2H)-one leads to the formation of the condensation product 1-butyl-2-[hydroxy-(4-hydroxy-5-methyl-3-oxofuran-2(3H)-ylidene)methyl]-pyridinium.


Assuntos
Aldeídos/síntese química , Hexoses/química , Lisina/química , Reação de Maillard , Compostos de Piridínio/síntese química , Aldeídos/química , Isótopos de Carbono , Marcação por Isótopo , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Compostos de Piridínio/química
6.
Bioconjug Chem ; 14(3): 619-28, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-12757388

RESUMO

Advanced glycation end products (AGEs) contribute to various pathologies associated with the general aging process and long-term complications of diabetes. Involvement of alpha-dicarbonyl intermediates in the formation of such compounds is firmly established. We now report on the first unequivocal identification of the dideoxyosone N(6)-(2,3-dihydroxy-5,6-dioxohexyl)-l-lysinate (4) on lysozyme via its quinoxaline derivative N(6)-(2,3-dihydroxy-4-quinoxalin-2-ylbutyl)-l-lysinate (6), formed by reaction of 4 with o-phenylenediamine (OPD). For accurate quantification of the total content of 6 as well as of glucosepane 5 by LC-(ESI)MS, (13)C(6)-labeled reference compounds were independently synthesized; 5 so far is the only established follow-up product of 4. With an overall lysine derivatization quota of 5%, compound 4 is shown to be a quantitatively important Maillard intermediate of which only about 8 per thousand are transformed into the cross-link 5. Hence, the major follow-up products of the highly reactive intermediate 4 are yet unknown. The site-specific quantitative evaluation of aminoketose 1 and quinoxaline 6 by LC-(ESI)MS peptide mapping shows that all lysine moieties in lysozyme are in fact modified by these compounds. If an arginine side chain is adjacent to the lysine moiety, transformation of 1 into 4 seems to be favored. The efficient formation and high reactivity of 4 clearly points to its potential as exogenous or endogenous glycotoxin.


Assuntos
Produtos Finais de Glicação Avançada/análise , Produtos Finais de Glicação Avançada/química , Mapeamento de Peptídeos/métodos , Sequência de Aminoácidos , Sítios de Ligação , Avaliação Pré-Clínica de Medicamentos/métodos , Cromatografia Gasosa-Espectrometria de Massas/métodos , Dados de Sequência Molecular , Fragmentos de Peptídeos/análise , Espectrometria de Massas por Ionização por Electrospray/métodos
7.
J Agric Food Chem ; 51(16): 4810-8, 2003 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-14705917

RESUMO

Covalently cross-linked proteins are among the major modifications caused by the advanced Maillard reaction. So far, the chemical nature of these aggregates is largely unknown. Investigations are reported on the isolation of 6-[2-[[(4S)-4-amino-4-carboxybutyl]amino]-6,7-dihydroxy-6,7-dihydroimidazo[4,5-b]azepin-4(5H)-yl]-L-norleucine (10) and N-acetyl-6-[(6R,7R)-2-[[4-(acetylamino)-4-carboxybutyl]amino]-6,7,8a-trihydroxy-6,7,8,8a-tetrahydroimidazo[4,5-b]azepin-4(5H)-yl]-L-norleucine (12) formed by oxidation of the major Maillard cross-link glucosepane 1. Independent synthesis and unequivocal structural characterization are given for 10 and 12. Spiro cross-links, representing a new class of glycoxidation products, were obtained by dehydrogenation of the amino imidazolinimine compounds N6-[2-[[(4S)-4-ammonio-5-oxido-5-oxopentyl]amino]-5-[(2S,3R)-2,3,4-trihydroxybutyl]-3,5-dihydro-4H-imidazol-4-ylidene]-L-lysinate (DOGDIC 2) and N6-[2-[[(4S)-4-ammonio-5-oxido-5-oxopentyl]amino]-5-[(2S)-2,3-dihydroxypropyl]-3,5-dihydro-4H-imidazol-4-ylidene]-L-lysinate (DOPDIC 3). These new oxidation products were synthesized, and their unambiguous structural elucidation proved the formation of the spiro imidazolimine structures N6-[(7R,8S)-2-[[(4S)-4-ammonio-5-oxido-5-oxopentyl]amino]-8-hydroxy-7-(hydroxymethyl)-6-oxa-1,3-diazaspiro[4.4]non-1-en-4-ylidene]-L-lysinate (16), N6-(8R,9S)-2-[(4S)-4-ammonio-5-oxido-5-oxopentyl]amino]-8,9-dihydroxy-6-oxa-1,3-diazaspiro[4.5]dec-1-en-4-ylidene)-L-lysinate (19), and N6-[(8S)-2-[(4-amino-4-carboxybutyl)amino]-8-hydroxy-6-oxa-1,3-diazaspiro[4.4]non-1-en-4-ylidene]-L-lysinate (18), respectively. It was shown that reaction of the imidazolinone 15 led to the formation of spiro imidazolones, structurally analogous to 16 and 19.


Assuntos
Azepinas/química , Iminas/química , Lisina/análogos & derivados , Lisina/química , Compostos de Espiro/química , Reagentes de Ligações Cruzadas , Análise de Alimentos , Produtos Finais de Glicação Avançada/química , Imidazóis/química , Reação de Maillard , Oxirredução
9.
Arch Biochem Biophys ; 402(1): 110-9, 2002 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-12051689

RESUMO

Advanced glycation end products (AGEs) from the Maillard reaction contribute to protein aging and the pathogenesis of age- and diabetes-associated complications. The alpha-dicarbonyl compound methylglyoxal (MG) is an important intermediate in AGE synthesis. Recent studies suggest that pyridoxamine inhibits formation of advanced glycation and lipoxidation products. We wanted to determine if pyridoxamine could inhibit MG-mediated Maillard reactions and thereby prevent AGE formation. When lens proteins were incubated with MG at 37 degrees C, pH 7.4, we found that pyridoxamine inhibits formation of methylglyoxal-derived AGEs concentration dependently. Pyridoxamine reduces MG levels in red blood cells and plasma and blocks formation of methylglyoxal-lysine dimer in plasma proteins from diabetic rats and it prevents pentosidine (an AGE derived from sugars) from forming in plasma proteins. Pyridoxamine also decreases formation of protein carbonyls and thiobarbituric-acid-reactive substances in plasma proteins from diabetic rats. Pyridoxamine treatment did not restore erythrocyte glutathione (which was reduced by almost half) in diabetic animals, but it enhanced erythrocyte glyoxalase I activity. We isolated a major product of the reaction between MG and pyridoxamine and identified it as methylglyoxal-pyridoxamine dimer. Our studies show that pyridoxamine reduces oxidative stress and AGE formation. We suspect that a direct interaction of pyridoxamine with MG partly accounts for AGE inhibition.


Assuntos
Arginina/análogos & derivados , Diabetes Mellitus Experimental/metabolismo , Lisina/análogos & derivados , Piridoxamina/farmacologia , Aldeído Pirúvico/metabolismo , Animais , Arginina/metabolismo , Bovinos , Cromatografia Líquida de Alta Pressão , Cristalinas/metabolismo , Dimerização , Eritrócitos/metabolismo , Glutationa/metabolismo , Produtos Finais de Glicação Avançada/metabolismo , Lactoilglutationa Liase/metabolismo , Lisina/metabolismo , Espectroscopia de Ressonância Magnética , Reação de Maillard , Modelos Químicos , Estresse Oxidativo , Ratos , Ratos Sprague-Dawley , Substâncias Reativas com Ácido Tiobarbitúrico
10.
J Biol Chem ; 277(28): 24907-15, 2002 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-11978796

RESUMO

Glycation reactions leading to protein modifications (advanced glycation end products) contribute to various pathologies associated with the general aging process and long term complications of diabetes. However, only few relevant compounds have so far been detected in vivo. We now report on the first unequivocal identification of the lysine-arginine cross-links glucosepane 5, DOGDIC 6, MODIC 7, and GODIC 8 in human material. For their accurate quantification by coupled liquid chromatography-electrospray ionization mass spectrometry, (13)C-labeled reference compounds were synthesized independently. Compounds 5-8 are formed via the alpha-dicarbonyl compounds N(6)-(2,3-dihydroxy-5,6-dioxohexyl)-l-lysinate (1a,b), 3-deoxyglucosone (), methylglyoxal (), and glyoxal (), respectively. The protein-bound dideoxyosone 1a,b seems to be of prime significance for cross-linking because it presumably is not detoxified by mammalian enzymes as readily as 2-4. Hence, the follow-up product glucosepane 5 was found to be the dominant compound. Up to 42.3 pmol of 5/mg of protein was identified in human serum albumin of diabetics; the level of 5 correlates markedly with the glycated hemoglobin HbA(1c). In the water-insoluble fraction of lens proteins from normoglycemics, concentration of 5 ranges between 132.3 and 241.7 pmol/mg. The advanced glycoxidation end product GODIC 8 is elevated significantly in brunescent lenses, indicating enhanced oxidative stress in this material. Compounds 5-8 thus appear predestined as markers for pathophysiological processes.


Assuntos
Azepinas/química , Cristalinas/química , Cristalino/química , Lisina/química , Reação de Maillard , Albumina Sérica/química , Cromatografia Líquida , Produtos Finais de Glicação Avançada , Humanos , Cinética , Lisina/análogos & derivados , Ressonância Magnética Nuclear Biomolecular , Espectrometria de Massas por Ionização por Electrospray
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...