Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Comp Cytogenet ; 12(2): 163-170, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29780444

RESUMO

Kingfishers comprise about 115 species of the family Alcedinidae, and are an interesting group for cytogenetic studies, for they are among birds with most heterogeneous karyotypes. However, cytogenetics knowledge in Kingfishers is extremely limited. Thus, the aim of this study was to describe the karyotype structure of the Ringed Kingfisher (Megaceryle torquata Linnaeus, 1766) and Green Kingfisher (Chloroceryle americana Gmelin, 1788) and also compare them with related species in order to identify chromosomal rearrangements. The Ringed Kingfisher presented 2n = 84 and the Green Kingfisher had 2n = 94. The increase of the chromosome number in the Green Kingfisher possibly originated by centric fissions in macrochromosomes. In addition, karyotype comparisons in Alcedinidae show a heterogeneity in the size and morphology of macrochromosomes, and chromosome numbers ranging from 2n = 76 to 132. Thus, it is possible chromosomal fissions in macrochromosomes resulted in the increase of the diploid number, whereas chromosome fusions have originated the karyotypes with low diploid number.

2.
Comp Cytogenet ; 11(3): 541-552, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29093802

RESUMO

Penguins are classified in the order Sphenisciformes into a single family, Spheniscidae. The genus Pygoscelis Wagler, 1832, is composed of three species, Pygoscelis antarcticus Forster, 1781, P. papua Forster, 1781 and P. adeliae Hombron & Jacquinot, 1841. In this work, the objective was to describe and to compare the karyotypes of Pygoscelis penguins contributing genetic information to Sphenisciformes. The metaphases were obtained by lymphocyte culture, and the diploid number and the C-banding pattern were determined. P. antarcticus has 2n = 92, P. papua 2n = 94 and P. adeliae exhibited 2n = 96 in males and 2n = 95 in females. The difference of diploid number in P. adeliae was identified as a multiple sex chromosome system where males have Z1Z1Z2Z2 and females Z1Z2W. The C-banding showed the presence of a heterochromatic block in the long arm of W chromosome and Z2 was almost entirely heterochromatic. The probable origin of a multiple system in P. adeliae was a translocation involving the W chromosome and the chromosome ancestral to Z2. The comparison made possible the identification of a high karyotype homology in Sphenisciformes which can be seen in the conservation of macrochromosomes and in the Z chromosome. The karyotypic divergences in Pygoscelis are restricted to the number of microchromosomes and W, which proved to be highly variable in size and morphology. The data presented in this work corroborate molecular phylogenetic proposals, supporting the monophyletic origin of penguins and intraspecific relations.

3.
Genetica ; 143(5): 535-43, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26092368

RESUMO

Saltator is a genus within family Thraupidae, the second largest family of Passeriformes, with more than 370 species found exclusively in the New World. Despite this, only a few species have had their karyotypes analyzed, most of them only with conventional staining. The diploid number is close to 80, and chromosome morphology is similar to the usual avian karyotype. Recent studies using cross-species chromosome painting have shown that, although the chromosomal morphology and number are similar to many species of birds, Passeriformes exhibit a complex pattern of paracentric and pericentric inversions in the chromosome homologous to GGA1q in two different suborders, Oscines and Suboscines. Hence, considering the importance and species richness of Thraupidae, this study aims to analyze two species of genus Saltator, the golden-billed saltator (S. aurantiirostris) and the green-winged saltator (S. similis) by means of classical cytogenetics and cross-species chromosome painting using Gallus gallus and Leucopternis albicollis probes, and also 5S and 18S rDNA and telomeric sequences. The results show that the karyotypes of these species are similar to other species of Passeriformes. Interestingly, the Z chromosome appears heteromorphic in S. similis, varying in morphology from acrocentric to metacentric. 5S and 18S probes hybridize to one pair of microchromosomes each, and telomeric sequences produce signals only in the terminal regions of chromosomes. FISH results are very similar to the Passeriformes already analyzed by means of molecular cytogenetics (Turdus species and Elaenia spectabilis). However, the paracentric and pericentric inversions observed in Saltator are different from those detected in these species, an observation that helps to explain the probable sequence of rearrangements. As these rearrangements are found in both suborders of Passeriformes (Oscines and Suboscines), we propose that the fission of GGA1 and inversions in GGA1q have occurred very early after the radiation of this order.


Assuntos
Rearranjo Gênico , Cromossomos Sexuais , Aves Canoras/genética , Animais , Bandeamento Cromossômico , Inversão Cromossômica , Coloração Cromossômica/métodos , Evolução Molecular , Feminino , Hibridização in Situ Fluorescente/métodos , Cariótipo , Masculino , Telômero/genética
4.
Comp Cytogenet ; 6(4): 379-87, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-24260678

RESUMO

Studies of karyotypes have been revealing important information on the taxonomic relationships and evolutionary patterns in various groups of birds. However, the order Caprimulgiformes is one of the least known in terms of its cytotaxonomy. So far, there are no cytogenetic data in the literature on birds belonging to 3 of 5 families of this order -Nyctibiidae, Steatornithidae and Aegothelidae. For this reason, the aim of our study was to describe the karyotype of Nyctibius griseus (Gmelin, 1789) (Aves, Nyctibiidae, Caprimulgiformes) and contribute with new data that could help to clarify the evolutionary relationships in this group. Bone marrow was cultured directly to obtain material for the chromosome study. C-banding was used to visualize the constitutive heterochromatin and Ag-NOR-banding to reveal nucleolus organizer regions. The diploid number observed was 2n=86±. Using sequential Giemsa/C-banding staining, we determined that the W chromosome was entirely C-band positive with the two most prominent markers in the interstitial and distal regions of the long arm. The nucleolus organizer regions showed a typical location in a pair of microchromosomes that exhibited Ag-NOR.The results obtained for Nyctibius griseus suggest that, of all the species studied in the references cited, it has the most ancestral sex chromosome composition of the order Caprimulgiformes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA