Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Front Aging Neurosci ; 14: 719089, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35350633

RESUMO

Alterations to interactions between networked brain regions underlie cognitive impairment in many neurodegenerative diseases, providing an important physiological link between brain structure and cognitive function. Previous attempts to characterize the effects of Parkinson's disease (PD) on network functioning using resting-state functional magnetic resonance imaging (rs-fMRI), however, have yielded inconsistent and contradictory results. Potential problems with prior work arise in the specifics of how the area targeted by the diseases (the basal ganglia) interacts with other brain regions. Specifically, current computational models point to the fact that the basal ganglia contributions should be captured with modulatory (i.e., second-order) rather than direct (i.e., first-order) functional connectivity measures. Following this hypothesis, a principled but manageable large-scale brain architecture, the Common Model of Cognition, was used to identify differences in basal ganglia connectivity in PD by analyzing resting-state fMRI data from 111 participants (70 patients with PD; 41 healthy controls) using Dynamic Causal Modeling (DCM). Specifically, the functional connectivity of the basal ganglia was modeled as two second-level, modulatory connections that control projections from sensory cortices to the prefrontal cortex, and from the hippocampus and medial temporal lobe to the prefrontal cortex. We then examined group differences between patients with PD and healthy controls in estimated modulatory effective connectivity in these connections. The Modulatory variant of the Common Model of Cognition outperformed the Direct model across all subjects. It was also found that these second-level modulatory connections had higher estimates of effective connectivity in the PD group compared to the control group, and that differences in effective connectivity were observed for all direct connections between the PD and control groups.We make the case that accounting for modulatory effective connectivity better captures the effects of PD on network functioning and influences the interpretation of the directionality of the between-group results. Limitations include that the PD group was scanned on dopaminergic medication, results were derived from a reasonable but small number of individuals and the ratio of PD to healthy control participants was relatively unbalanced. Future research will examine if the observed effect holds for individuals with PD scanned off their typical dopaminergic medications.

2.
PLoS One ; 14(8): e0214266, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31398191

RESUMO

Drought affects avian communities in complex ways. We used our own and citizen science-generated reproductive data acquired through The Cornell Lab of Ornithology's NestWatch Program, combined with drought and vegetation indices obtained from governmental agencies, to determine drought effects on Eastern Bluebird (Sialia sialis L.) reproduction across their North American breeding range for the years 2006-2013. Our results demonstrate that some aspects of bluebird reproductive success vary with the timing and severity of drought. Clutch size was unaffected by any level of drought at the time of clutch initiation or during the 30 to 60 days prior to clutch initiation. Hatching and fledging rates decreased as drought severity increased. Drought conditions occurring at least 30 days prior to the date eggs should have hatched and 60 days prior to the date offspring should have fledged negatively affected reproduction. We also demonstrate the value of datasets generated by citizen scientists in combination with climate data for examining biotic responses at large temporal and spatial scales.


Assuntos
Secas , Passeriformes/fisiologia , Reprodução , Animais , Estatística como Assunto , Fatores de Tempo
3.
Brain Connect ; 9(7): 554-565, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31131605

RESUMO

Both functional connectivity (FC) and blood oxygen level-dependent (BOLD) signal variability (SDBOLD) are methods that are used for examining the physiological state of the brain. Although they are derived from signal changes and are related, a few studies have explored their relationship. Here, we examined the relationship between SDBOLD and FC within the default mode network (DMN) in healthy aging participants and those with Parkinson's disease (PD) ON and OFF dopaminergic medications. Dopaminergic medications had profound effects on both DMN FC and SDBOLD measured separately in PD. Analyzing DMN FC and SDBOLD in a joint independent component analysis, we identified joint components of DMN FC and SDBOLD that were separately associated with measurements of motor and cognitive impairment in PD and qualitatively similar to those in healthy aging. Dopaminergic medications had a differential effect on these components depending on these measures of disease severity, "normalizing" the relationships. Importantly, we show that dopaminergic medication status matters in imaging PD, and it can affect both connectivity and SDBOLD. Imaging PD ON may lead to inflated estimates of SDBOLD and diminish the ability to measure changes associated with declining motor and cognitive capacities.


Assuntos
Envelhecimento Saudável/fisiologia , Oxigênio/sangue , Doença de Parkinson/fisiopatologia , Idoso , Encéfalo/fisiopatologia , Mapeamento Encefálico/métodos , Transtornos Cognitivos/fisiopatologia , Disfunção Cognitiva/fisiopatologia , Conectoma/métodos , Dopaminérgicos/sangue , Dopaminérgicos/farmacologia , Feminino , Humanos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Vias Neurais/fisiopatologia , Testes Neuropsicológicos , Descanso
4.
Biom J ; 59(6): 1352-1381, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28699334

RESUMO

We develop a two-stage spatial point process model that introduces new characterizations of activation patterns in multisubject functional Magnetic Resonance Imaging (fMRI) studies. Conventionally multisubject fMRI methods rely on combining information across subjects one voxel at a time in order to identify locations of peak activation in the brain. The two-stage model that we develop here addresses shortcomings of standard methods by explicitly modeling the spatial structure of functional signals and recognizing that corresponding cross-subject functional signals can be spatially misaligned. In our first stage analysis, we introduce a marked spatial point process model that captures the spatial features of the functional response and identifies a configuration of activation units for each subject. The locations of these activation units are used as input for the second stage model. The point process model of the second stage analysis is developed to characterize multisubject activation patterns by estimating the strength of cross-subject interactions at different spatial ranges. The model uses spatial neighborhoods to account for the cross-subject spatial misalignment in corresponding functional units. We applied our methods to an fMRI study of 21 individuals who performed an attention test. We identified four brain regions that are involved in the test and found that our model results agree well with our understanding of how these regions engage with the tasks performed during the attention test. Our results highlighted that cross-subject interactions are stronger in brain areas that have a more specific function in performing the experimental tasks than in other areas.


Assuntos
Biometria/métodos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Modelos Estatísticos , Idoso , Encéfalo/diagnóstico por imagem , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...