Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Health Serv Res ; 59(2): e14269, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38148004

RESUMO

OBJECTIVE: To test whether the impacts of Medicaid's Home and Community-Based Services (HCBS) expenditures have been equitable. DATA SOURCES AND STUDY SETTING: This is a secondary data analysis. We linked annual data on state-level Medicaid HCBS expenditures with individual data from U.S. Health and Retirement Study (HRS; 2006-2016). STUDY DESIGN: We evaluated the association between state-level HCBS expenditure quartiles and the risk of experiencing challenges in basic or instrumental activities of daily living (I/ADLs) without assistance (unmet needs for care). We fitted generalized estimating equations (GEE) with a Poisson distribution, log link function, and an unstructured covariance matrix. We controlled demographics, time, and place-based fixed effects and estimated models stratified by race and ethnicity, gender, and urbanicity. We tested the robustness of results with negative controls. DATA COLLECTION/EXTRACTION METHODS: Our analytic sample included HRS Medicaid beneficiaries, aged 55+, who had difficulty with ≥1 I/ADL (n = 2607 unique respondents contributing 4719 person-wave observations). PRINCIPAL FINDINGS: Among adults with IADL difficulty, higher quartiles of HCBS expenditure (vs. the lowest quartile) were associated with a lower overall prevalence of unmet needs for care (e.g., Prevalence Ratio [PR], Q4 vs. Q1: 0.91, 95% CI: 0.84-0.98). This protective association was concentrated among non-Hispanic white respondents (Q4 vs. Q1: 0.82, 95% CI: 0.73-0.93); estimates were imprecise for Hispanic individuals and largely null for non-Hispanic Black participants. We found no evidence of heterogeneity by gender or urbanicity. Negative control robustness checks indicated that higher quartiles of HCBS expenditure were not associated with (1) the risk of reporting I/ADL difficulty among 55+ Medicaid beneficiaries, and (2) the risk of unmet care needs among non-Medicaid beneficiaries. CONCLUSION: The returns to higher state-level HCBS expenditures under Medicaid for older adults with I/ADL disability do not appear to have been equitable by race and ethnicity.


Assuntos
Gastos em Saúde , Serviços de Assistência Domiciliar , Humanos , Estados Unidos , Idoso , Serviços de Saúde Comunitária , Atividades Cotidianas , Medicaid
2.
Adv Sci (Weinh) ; 10(14): e2205913, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36960682

RESUMO

Entosis is a non-apoptotic cell death process that forms characteristic cell-in-cell structures in cancers, killing invading cells. Intracellular Ca2+ dynamics are essential for cellular processes, including actomyosin contractility, migration, and autophagy. However, the significance of Ca2+ and Ca2+ channels participating in entosis is unclear. Here, it is shown that intracellular Ca2+ signaling regulates entosis via SEPTIN-Orai1-Ca2+ /CaM-MLCK-actomyosin axis. Intracellular Ca2+ oscillations in entotic cells show spatiotemporal variations during engulfment, mediated by Orai1 Ca2+ channels in plasma membranes. SEPTIN controlled polarized distribution of Orai1 for local MLCK activation, resulting in MLC phosphorylation and actomyosin contraction, leads to internalization of invasive cells. Ca2+ chelators and SEPTIN, Orai1, and MLCK inhibitors suppress entosis. This study identifies potential targets for treating entosis-associated tumors, showing that Orai1 is an entotic Ca2+ channel that provides essential Ca2+ signaling and sheds light on the molecular mechanism underlying entosis that involves SEPTIN filaments, Orai1, and MLCK.


Assuntos
Actomiosina , Neoplasias , Humanos , Entose/fisiologia , Septinas , Neoplasias/patologia , Morte Celular , Proteína ORAI1
3.
J Med Virol ; 95(3): e28618, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36840410

RESUMO

Coronaviruses target ciliate cells causing the loss of cilia, acute rhinorrheas, and other ciliopathies. The loss of ciliary function may help the virus infect, replicate, and spread. However, the molecular mechanisms by which coronaviruses cause ciliary defects are still unclear. Herein we demonstrate how coronavirus infection and severe acute respiratory syndrome coronavirus2 3CL protease induce cilia dysfunction by targeting a host protein septin that is required for the structure and function of cilia. Further, we demonstrate that coronaviruses and 3CL protease lead to the cleavage of several septin proteins (SEPT2, -6, and -9), producing cleaved obstructive fragments. Furthermore, ectopic expression of cleaved SEPT2 fragments shows defective ciliogenesis, disoriented septin filaments, and ablated Sonic Hedgehog (SHH) signaling in a protease activity-dependent manner. We present that the 3CLpro inhibitors are potent and prevent abnormal ciliary structures and SHH signaling. These results provide useful insights into the general mechanisms underlying ciliary defects caused by coronaviruses, which, in turn, facilitate virus spread and prove that preclinical and clinical 3CL protease inhibitors may prove useful as therapeutics for treating ciliary defects of coronaviruses.


Assuntos
COVID-19 , Septinas , Humanos , Septinas/genética , Septinas/metabolismo , Proteínas Hedgehog/metabolismo , Peptídeo Hidrolases/metabolismo , Transdução de Sinais , Endopeptidases/metabolismo , Inibidores de Proteases/uso terapêutico
4.
Int J Stem Cells ; 16(1): 108-116, 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36310028

RESUMO

γδ T cells are a rare and unique prototype of T cells that share properties with natural killer cells in secondary lymphoid organs. Although many studies have revealed the function and importance of adult-derived γδ T cells in cancer biology and regenerative medicine, the low numbers of these cells hamper their application as therapeutic cell sources in the clinic. To solve this problem, pluripotent stem cell-derived γδ T cells are considered alternative cell sources; however, few studies have reported the generation of human pluripotent stem cell-derived γδ T cells. In the present study, we investigated whether lymphoid lineage γδ T cells were successfully generated from human pluripotent stem cells via hemogenic endothelium under defined culture conditions. Our results revealed that pluripotent stem cells successfully generated γδ T cells with an overall increase in transcriptional activity of lymphoid lineage genes and cytolytic factors, indicating the importance of the optimization of culture conditions in generating lymphoid lineage γδ T cells. We uncovered an initial step in differentiating γδ T cells that could be applied to basic and translational investigations in the field of cancer biology. Based on our result, we will develop an appropriate method to purify γδ T cells with functionality and it helpful for the study of basic mechanism of γδ T cells in pathophysiologic condition as well as clinic application.

5.
Int J Mol Sci ; 23(20)2022 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-36293381

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a highly transmissible and pathogenic coronavirus that has caused a 'coronavirus disease 2019' (COVID-19) pandemic in multiple waves, which threatens human health and public safety. During this pandemic, some patients with COVID-19 acquired secondary infections, such as mucormycosis, also known as black fungus disease. Mucormycosis is a serious, acute, and deadly fungal infection caused by Mucorales-related fungal species, and it spreads rapidly. Hence, prompt diagnosis and treatment are necessary to avoid high mortality and morbidity rates. Major risk factors for this disease include uncontrolled diabetes mellitus and immunosuppression that can also facilitate increases in mucormycosis infections. The extensive use of steroids to prevent the worsening of COVID-19 can lead to black fungus infection. Generally, antifungal agents dedicated to medical applications must be biocompatible, non-toxic, easily soluble, efficient, and hypoallergenic. They should also provide long-term protection against fungal growth. COVID-19-related black fungus infection causes a severe increase in fatalities. Therefore, there is a strong need for the development of novel and efficient antimicrobial agents. Recently, nanoparticle-containing products available in the market have been used as antimicrobial agents to prevent bacterial growth, but little is known about their efficacy with respect to preventing fungal growth, especially black fungus. The present review focuses on the effect of various types of metal nanoparticles, specifically those containing silver, zinc oxide, gold, copper, titanium, magnetic, iron, and carbon, on the growth of various types of fungi. We particularly focused on how these nanoparticles can impact the growth of black fungus. We also discussed black fungus co-infection in the context of the global COVID-19 outbreak, and management and guidelines to help control COVID-19-associated black fungus infection. Finally, this review aimed to elucidate the relationship between COVID-19 and mucormycosis.


Assuntos
Tratamento Farmacológico da COVID-19 , Mucorales , Mucormicose , Nanopartículas , Óxido de Zinco , Humanos , SARS-CoV-2 , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Mucormicose/tratamento farmacológico , Mucormicose/epidemiologia , Mucormicose/microbiologia , Prata/farmacologia , Óxido de Zinco/farmacologia , Cobre/farmacologia , Titânio/farmacologia , Ferro/farmacologia , Ouro/farmacologia , Carbono/farmacologia
6.
Cell Rep ; 38(3): 110281, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-35045297

RESUMO

Progesterone receptor membrane component 1 (PGRMC1), the overexpression of which reduces survivability of cancer patients, is essential for cell migration and metastasis. However, the intracellular signaling pathways involved are largely unknown. Here, we report that PGRMC1 promotes store-operated Ca2+ entry (SOCE) as a functional interactor of stromal interaction molecule 1 (STIM1). PGRMC1 was repeatedly detected as an interactor of STIM1-Orai1 complex via complementation-dependent in situ labeling. Genetic depletion of PGRMC1 decreased SOCE and impaired activation of the nuclear factor of the activated T cell (NFAT) pathway. Mechanistically, PGRMC1 directly bound to the coiled-coil domain of STIM1, promoting STIM1 conformational switch. In breast cancer cells, PGRMC1 depletion reduced epidermal growth factor (EGF)-induced SOCE and disrupted focal adhesion turnover and actomyosin formation. These findings identify PGRMC1 as an essential regulator of Ca2+ signaling in breast cancer cells, providing a target for treating cancer metastasis and an insight for dissecting various PGRMC1/SOCE-induced biological processes.


Assuntos
Actomiosina/metabolismo , Neoplasias da Mama/patologia , Cálcio/metabolismo , Adesões Focais/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Neoplasias/metabolismo , Receptores de Progesterona/metabolismo , Molécula 1 de Interação Estromal/metabolismo , Neoplasias da Mama/metabolismo , Sinalização do Cálcio/fisiologia , Linhagem Celular , Humanos , Proteína ORAI1/metabolismo , Transdução de Sinais/fisiologia
7.
Materials (Basel) ; 14(21)2021 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-34772198

RESUMO

In order to examine the effect of excessive sulfate in the leachate of spent Li-ion batteries (LIBs), LiNi1/3Co1/3Mn1/3O2 (pristine NCM) and sulfate-containing LiNi1/3Co1/3Mn1/3O2 (NCMS) are prepared by a co-precipitation method. The crystal structures, morphology, surface species, and electrochemical performances of both cathode active materials are studied by scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and charge-discharge tests. The XRD patterns and XPS results identify the presence of sulfate groups on the surface of NCMS. While pristine NCM exhibits a very dense surface in SEM images, NCMS has a relatively porous surface, which could be attributed to the sulfate impurities that hinder the growth of primary particles. The charge-discharge tests show that discharge capacities of NCMS at C-rates, which range from 0.1 to 5 C, are slightly decreased compared to pristine NCM. In dQ/dV plots, pristine NCM and NCMS have the same redox overvoltage regardless of discharge C-rates. The omnipresent sulfate due to the sulfuric acid leaching of spent LIBs has a minimal effect on resynthesized NCM cathode active materials as long as their precursors are adequately washed.

8.
Stem Cell Res Ther ; 12(1): 431, 2021 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-34332643

RESUMO

BACKGROUND: Premature ovarian insufficiency (POI) is one of the most serious side effects of chemotherapy in young cancer survivors. It may not only reduce fecundity but also affect lifelong health. There is no standard therapy for preserving ovarian health after chemotherapy. Recently, administration of embryonic stem cell-derived mesenchymal progenitor cells (ESC-MPCs) has been considered a new therapeutic option for preventing POI. However, the previous method of directly injecting cells into the veins of patients exhibits low efficacy and safety. This study aimed to develop safe and effective local delivery methods for the prevention of POI using two types of bioinspired scaffolds. METHODS: Female mice received intraperitoneal cisplatin for 10 days. On day 11, human ESC-MPCs were delivered through systemic administration using intravenous injection or local administration using intradermal injection and intradermal transplantation with a PLGA/MH sponge or hyaluronic acid (HA) gel (GEL) type of scaffold. PBS was injected intravenously as a negative control. Ovarian function and fertility were evaluated 4 weeks after transplantation. Follicle development was observed using hematoxylin and eosin staining. The plasma levels of sex hormones were measured using ELISA. Expression levels of anti-Müllerian hormone (AMH) and ki-67 were detected using immunostaining, and the quality of oocytes and embryos was evaluated after in vitro fertilization. The estrous cycles were observed at 2 months after transplantation. RESULTS: The local administration of human ESC-MPCs using the bioinspired scaffold to the backs of mice effectively prolonged the cell survival rate in vivo. The HA GEL group exhibited the best recovered ovarian functions, including a significantly increased number of ovarian reserves, estrogen levels, and AMH levels and decreased apoptotic levels. Furthermore, the HA GEL group showed improved quality of oocytes and embryos and estrous cycle regularity. CONCLUSIONS: HA GEL scaffolds can be used as new delivery platforms for ESC-MPC therapy, and this method may provide a novel option for the clinical treatment of chemotherapy-induced POI.


Assuntos
Antineoplásicos , Células-Tronco Embrionárias Humanas , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Insuficiência Ovariana Primária , Animais , Feminino , Humanos , Camundongos , Insuficiência Ovariana Primária/induzido quimicamente , Insuficiência Ovariana Primária/prevenção & controle
9.
Cell Prolif ; 54(7): e13059, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34021643

RESUMO

OBJECTIVES: The genetic instability and DNA damage arise during transcription factor-mediated reprogramming of somatic cells, and its efficiency may be reduced due to abnormal chromatin remodelling. The efficiency in somatic cell nuclear transfer (SCNT)-mediated reprogramming is also very low, and it is caused by development arrest of most reconstituted embryos. MATERIALS AND METHODS: Whether the repair of genetic instability or double-strand breaks (DSBs) during SCNT reprogramming may play an important role in embryonic development, we observed and analysed the effect of Rad 51, a key modulator of DNA damage response (DDR) in SCNT-derived embryos. RESULTS: Here, we observed that the activity of Rad 51 is lower in SCNT eggs than in conventional IVF and found a significantly lower level of DSBs in SCNT embryos during reprogramming. To address this difference, supplementation with RS-1, an activator of Rad51, during the activation of SCNT embryos can increase RAD51 expression and DSB foci and thereby increased the efficiency of SCNT reprogramming. Through subsequent single-cell RNA-seq analysis, we observed the reactivation of a large number of genes that were not expressed in SCNT-2-cell embryos by the upregulation of DDR, which may be related to overcoming the developmental block. Additionally, there may be an independent pathway involving histone demethylase that can reduce reprograming-resistance regions. CONCLUSIONS: This technology can contribute to the production of comparable cell sources for regenerative medicine.


Assuntos
Benzamidas/farmacologia , Reprogramação Celular , Desenvolvimento Embrionário/efeitos dos fármacos , Sulfonamidas/farmacologia , Animais , Reparo do DNA/efeitos dos fármacos , Embrião de Mamíferos/citologia , Embrião de Mamíferos/efeitos dos fármacos , Embrião de Mamíferos/metabolismo , Feminino , Instabilidade Genômica , Histona Desmetilases/genética , Histona Desmetilases/metabolismo , Camundongos , Camundongos Endogâmicos ICR , Técnicas de Transferência Nuclear , Rad51 Recombinase/metabolismo , Regulação para Cima/efeitos dos fármacos
10.
Genomics Inform ; 19(4): e39, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35172472

RESUMO

Tamoxifen (TAM) is an anticancer drug used to treat estrogen receptor (ER)‒positive breast cancer. However, its ER-independent cytotoxic and antifungal activities have prompted debates on its mechanism of action. To achieve a better understanding of the ER-independent antifungal action mechanisms of TAM, we systematically identified TAM-sensitive genes through microarray screening of the heterozygous gene deletion library in fission yeast (Schizosaccharomyces pombe). Secondary confirmation was followed by a spotting assay, finally yielding 13 TAM-sensitive genes under the drug-induced haploinsufficient condition. For these 13 TAM-sensitive genes, we conducted a comparative analysis of their Gene Ontology (GO) 'biological process' terms identified from other genome-wide screenings of the budding yeast deletion library and the MCF7 breast cancer cell line. Several TAM-sensitive genes overlapped between the yeast strains and MCF7 in GO terms including 'cell cycle' (cdc2, rik1, pas1, and leo1), 'signaling' (sck2, oga1, and cki3), and 'vesicle-mediated transport' (SPCC126.08c, vps54, sec72, and tvp15), suggesting their roles in the ER-independent cytotoxic effects of TAM. We recently reported that the cki3 gene with the 'signaling' GO term was related to the ER-independent antifungal action mechanisms of TAM in yeast. In this study, we report that haploinsufficiency of the essential vps54 gene, which encodes the GARP complex subunit, significantly aggravated TAM sensitivity and led to an enlarged vesicle structure in comparison with the SP286 control strain. These results strongly suggest that the vesicle-mediated transport process might be another action mechanism of the ER-independent antifungal or cytotoxic effects of TAM.

11.
Biomol Ther (Seoul) ; 29(2): 234-247, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33223513

RESUMO

We used a heterozygous gene deletion library of fission yeasts comprising all essential and non-essential genes for a microarray screening of target genes of the antifungal terbinafine, which inhibits ergosterol synthesis via the Erg1 enzyme. We identified 14 heterozygous strains corresponding to 10 non-essential [7 ribosomal-protein (RP) coding genes, spt7, spt20, and elp2] and 4 essential genes (tif302, rpl2501, rpl31, and erg1). Expectedly, their erg1 mRNA and protein levels had decreased compared to the control strain SP286. When we studied the action mechanism of the non-essential target genes using cognate haploid deletion strains, knockout of SAGA-subunit genes caused a down-regulation in erg1 transcription compared to the control strain ED668. However, knockout of RP genes conferred no susceptibility to ergosterol-targeting antifungals. Surprisingly, the RP genes participated in the erg1 transcription as components of repressor complexes as observed in a comparison analysis of the experimental ratio of erg1 mRNA. To understand the action mechanism of the interaction between the drug and the novel essential target genes, we performed isobologram assays with terbinafine and econazole (or cycloheximide). Terbinafine susceptibility of the tif302 heterozygous strain was attributed to both decreased erg1 mRNA levels and inhibition of translation. Moreover, Tif302 was required for efficacy of both terbinafine and cycloheximide. Based on a molecular modeling analysis, terbinafine could directly bind to Tif302 in yeasts, suggesting Tif302 as a potential off-target of terbinafine. In conclusion, this genome-wide screening system can be harnessed for the identification and characterization of target genes under any condition of interest.

12.
Biomed Res Int ; 2020: 4826176, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32185206

RESUMO

Gardeniae Fructus 50% EtOH extract (GE) is a traditional herb that has been used to treat a variety of diseases. In this study, we investigate the antioxidant, anti-inflammatory, and antiapoptotic properties of GE on acute reflux-induced esophagitis (RE) model in rats. 2,2'-Azino-bis (3-ethylbenzothiazolin-6-sulfonic acid) (ABTS) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assays were performed to determine the antioxidant activity of GE. GE was given orally at 50 and 100 mg/kg body weight 1h 30 min prior to RE induction. And its effect was assessed in comparison with RE control and normal groups. The administration of the extract of the GE showed remarkable protection of mucosal damage in esophageal tissue, and the histologic observation showed that the gastric lesion was improved. Increased reactive oxygen species (ROS) levels in the serum were diminished by GE treatment. The antioxidative biomarkers including nuclear factor-erythroid 2-related factor 2 (Nrf-2), heme oxygenase-1 (HO-1), superoxide dismutase (SOD), catalase, and glutathione peroxidase (GPX) were significantly increased. GE administration significantly reduced the inflammatory protein expression through MAPK-related signaling pathways and the nuclear factor-kappa B (NF-κB) pathway. These results suggest that GE protects the esophagus mucosal membrane by attenuating oxidative stress and inflammatory response under reflux esophagitis condition through the antioxidant pathway. Therefore, it is suggested that GE may be a potential remedy for the treatment of reflux esophagitis.


Assuntos
Antioxidantes/farmacologia , Esofagite Péptica/tratamento farmacológico , Frutas/química , Gardenia/química , Extratos Vegetais/farmacologia , Doença Aguda , Animais , Antioxidantes/química , Esofagite Péptica/metabolismo , Esofagite Péptica/patologia , Etanol/química , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Inflamação/patologia , Masculino , Extratos Vegetais/química , Ratos , Ratos Sprague-Dawley
13.
Indian J Psychiatry ; 62(5): 524-530, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33678833

RESUMO

OBJECTIVES: Compared to adults, adolescents tend to prefer evening times developmentally. The orientation toward evening times is associated with behavioral and emotional problems. Thus, this study examined the association of circadian preference with sleep-related variables, depression, anxiety, and Internet addiction in Korean adolescents. MATERIALS AND METHODS: Participants completed the questionnaires measuring sleep pattern, sleep problem, depression, anxiety, and Internet addiction. RESULTS: Among 765 students (age range: 13-17 years), 211 students (N male= 134) were allocated into morning types (MT) and 258 adolescents (N male= 147) were allocated into evening types (ET) based on scores of the Morningness-Eveningness Scale. Adolescents without circadian preference (N = 296) were defined as neither type (NT). ET, compared to MT and NT, woke up later in the weekend, showed delays in bedtimes, and spent shorter time sleeping. They also reported a higher level of daytime sleepiness, insomnia, and depression than NT. However, the group difference in wake time on school days was not significant, and adolescents showed mild insomnia regardless of their circadian preference. Although smartphone using time in the weekend was significantly different between groups, group difference in Internet addiction was significant only when gender was adjusted. CONCLUSION: Circadian preference was associated with sleep patterns and sleep problems in Korean adolescents. ET showed significantly different sleep patterns compared to MT and NT. ET not only reported a higher level of daytime sleepiness and insomnia but also more depressive symptoms compared to NT. These findings suggest that the uniqueness of adolescence and environmental factors seemed to influence the association of circadian preference with mental problem.

14.
J Nanosci Nanotechnol ; 20(1): 161-167, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31383151

RESUMO

In this literature, we discussed the effect of anti-reflection coating of silicon heterojunction (SHJ) solar cells with different characteristics of double layered indium tin oxide (ITO/ITO) structure. Firstly, the OPAL 2 simulation was performed to optimize the values of the photo generation-current density of ITO/ITO/Si device structures. Afterwards, experimental work was conducted by depositing ITO on the SHJ solar cell to analyze the anti-reflection coating effect. ITO was deposited on the SHJ solar cell for 90 to 180 seconds by varying the oxygen flow rate. The highest short-circuit current density of 39.25 mA/cm² was obtained when ITO was deposited for 150 seconds, which was higher than the short-circuit current density of non-deposited cell of ITO (38 mA/cm²). The efficiency of the SHJ solar cell increased by about 2% after additional ITO deposition to 20.75%, which was due to the improvement of short-circuit current density by ITO deposition. The double layer ITO helped to improve the efficiency of SHJ solar cell by increasing light absorption in a silicon wafer.

15.
J Nanosci Nanotechnol ; 20(1): 245-251, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31383162

RESUMO

Copper plating has been considered as a future metallization technique to reduce metal contact area and material cost in silicon heterojunction (SHJ) solar cells. In this paper, a Cu-Sn alloy film is used as a seed layer material on an indium tin oxide (ITO) layer with the goal to enhance contact resistivity between the seed and ITO layer. The contact resistivity between the seed layer and ITO is an important parameter because low contact resistivity is required for the high fill factor of the solar cells. In addition, it was confirmed that tin diffusion to ITO can affect contact resistivity by annealing samples having a Cu-Sn seed layer. Contact resistivity values of the samples were extracted by using transfer length method (TLM). Atomic percentage of tin in the Cu-Sn film was measured by the energy dispersive spectrometer (EDS). Also, tape tests were carried out to simply confirm the adhesion of contacts with the Cu-Sn seed layer.

16.
J Cell Sci ; 133(1)2020 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-31831524

RESUMO

Store-operated Ca2+ entry (SOCE) is a major Ca2+ influx pathway that is controlled by the ER Ca2+ sensor STIM1. Abnormal activation of STIM1 directly influences Ca2+ influx, resulting in severe diseases such as Stormorken syndrome. The inactivation domain of STIM1 (IDstim) has been identified as being essential for Ca2+-dependent inactivation of STIM1 (CDI) after SOCE occurs. However, it is unknown whether IDstim is involved in keeping STIM1 inactive before CDI. Herein, we show that IDstim helps STIM1 keep inactive through intramolecular binding with the coiled-coil domain. Between IDstim and the coiled-coil domain, we found a short conserved linker whose extension or mutation leads to the constitutive activation of STIM1. We have demonstrated that IDstim needs the coiled-coil domain 1 (CC1) to inhibit the Ca2+ release-activated Ca2+ (CRAC) activation domain (CAD) activity and binds to a CC1-CAD fragment. Serial deletion of CC1 revealed that CC1α1 is a co-inhibitory domain of IDstim. CC1α1 deletion or leucine mutation, which abolishes the closed conformation, impaired the inhibitory effect and binding of IDstim. These results suggest that IDstim cooperates with CC1α1 to help STIM1 keep inactive under resting conditions.


Assuntos
Proteínas de Neoplasias/metabolismo , Molécula 1 de Interação Estromal/metabolismo , Cálcio/metabolismo , Células HEK293 , Humanos , Conformação Proteica , Domínios Proteicos
17.
BMB Rep ; 52(12): 712-717, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31818360

RESUMO

Translocase of outer mitochondrial membrane 20 (TOMM20) plays an essential role as a receptor for proteins targeted to mitochondria. TOMM20 was shown to be overexpressed in various cancers. However, the oncological function and therapeutic potential for TOMM20 in cancer remains largely unexplored. The purpose of this study was to elucidate the underlying molecular mechanism of TOMM20's contribution to tumorigenesis and to explore the possibility of its therapeutic potential using colorectal cancer as a model. The results show that TOMM20 overexpression resulted in an increase in cell proliferation, migration, and invasion of colorectal cancer (CRC) cells, while siRNA-mediated inhibition of TOMM20 resulted in significant decreases in cell proliferation, migration, and invasion. TOMM20 expression directly impacted the mitochondrial function including ATP production and maintenance of membrane potential, which contributed to tumorigenic cellular activities including regulation of S phase cell cycle and apoptosis. TOMM20 was overexpressed in CRC compared to the normal tissues and increased expression of TOMM20 to be associated with malignant characteristics including a higher number of lymph nodes and perineural invasion in CRC. Notably, knockdown of TOMM20 in the xenograft mouse model resulted in a significant reduction of tumor growth. This is the first report demonstrating a relationship between TOMM20 and tumorigenesis in colorectal cancer and providing promising evidence for the potential for TOMM20 to serve as a new therapeutic target of colorectal cancer. [BMB Reports 2019; 52(12): 712-717].


Assuntos
Neoplasias Colorretais/patologia , Receptores de Superfície Celular/antagonistas & inibidores , Trifosfato de Adenosina/metabolismo , Animais , Apoptose/genética , Carcinogênese/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/terapia , Regulação Neoplásica da Expressão Gênica , Humanos , Potencial da Membrana Mitocondrial/genética , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Pessoa de Meia-Idade , Mitocôndrias/genética , Mitocôndrias/metabolismo , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Metástase Neoplásica , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Pontos de Checagem da Fase S do Ciclo Celular/genética , Regulação para Cima/genética , Ensaios Antitumorais Modelo de Xenoenxerto
18.
Stem Cell Reports ; 12(3): 545-556, 2019 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-30799275

RESUMO

Cryopreservation has a negative effect on the quality of oocytes and may be closely associated with increased levels of reactive oxygen species (ROS) and apoptotic events. The purpose of the present study was to evaluate the detrimental effects on the developmental competence of somatic cell nuclear transferred (SCNT) mouse embryos using vitrified (cryopreserved) oocytes and to evaluate the recovery effects of melatonin on cryo-damage in cloned embryos. Development of SCNT embryos using cryopreserved oocyte cytoplasm (SCNT-CROC) was inferior to those using fresh cytoplasm (SCNT-FOC). Using RNA-sequencing analysis, we found upregulation of eight pro-apoptotic-related genes (Cyct, Dapk2, Dffb, Gadd45g, Hint2, Mien1, P2rx7, and Pmaip) in the SCNT-CROC group. Furthermore, the addition of melatonin, an agent that reduces apoptosis and ROS production, enhanced blastocyst formation rates in the SCNT-CROP group when compared with the melatonin-untreated group. Additionally, melatonin treatment increased the derivation efficiency of pluripotent stem cells from cloned embryos using cryopreserved oocyte.


Assuntos
Apoptose/fisiologia , Reprogramação Celular/fisiologia , Oócitos/citologia , Animais , Proteínas Reguladoras de Apoptose/metabolismo , Blastocisto/citologia , Blastocisto/metabolismo , Clonagem de Organismos/métodos , Criopreservação/métodos , Citoplasma/metabolismo , Embrião de Mamíferos/citologia , Embrião de Mamíferos/metabolismo , Feminino , Camundongos , Técnicas de Transferência Nuclear , Oócitos/metabolismo , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Regulação para Cima/fisiologia
19.
Mol Neurobiol ; 56(4): 2408-2423, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30030752

RESUMO

Although L-3,4-dihydroxyphenylalanine (L-DOPA) is currently the most effective medication for treating Parkinson's disease (PD) motor symptoms, its prolonged administration causes several adverse effects, including dyskinesia. To identify the mechanisms underlying the effects of acupuncture on L-DOPA-induced dyskinesia (LID), antidyskinetic effects of acupuncture were investigated in two mouse models of PD. Acupuncture stimulation at GB34 alleviated abnormal involuntary movements (AIMs) in Pitx3-deficient aphakia mice (ak/ak) following L-DOPA administration and these effects were reproduced in 6-hydroxydopamine (6-OHDA)-lesioned mice with LID. A transcriptome analysis of the hypothalamus revealed pro-melanin-concentrating hormone (Pmch) gene was highly expressed in acupuncture-treated mouse from ak/ak model of LID as well as 6-OHDA model of LID. Acupuncture combined with the administration of MCH receptor antagonist did not have any beneficial effects on dyskinesia in L-DOPA-injected ak/ak mice, but the intranasal administration of MCH attenuated LID to the same degree as acupuncture in both ak/ak and 6-OHDA mice with LID. A gene expression profile with a hierarchical clustering analysis of the dyskinesia-induced ak/ak mouse brain revealed an association between the mechanisms underlying acupuncture and MCH. Additionally, altered striatal responses to L-DOPA injection were observed after prolonged acupuncture and MCH treatments, which suggests that these treatment modalities influenced the compensatory mechanisms of LID. In summary, present study demonstrated that acupuncture decreased LID via hypothalamic MCH using L-DOPA-administered ak/ak and 6-OHDA mouse models and that MCH administration resulted in novel antidyskinetic effects in these models. Thus, acupuncture and MCH might be valuable therapeutic candidates for PD patients suffering from LID.


Assuntos
Terapia por Acupuntura , Afacia/complicações , Discinesia Induzida por Medicamentos/complicações , Discinesia Induzida por Medicamentos/terapia , Hormônios Hipotalâmicos/metabolismo , Levodopa/efeitos adversos , Melaninas/metabolismo , Hormônios Hipofisários/metabolismo , Fatores de Transcrição/deficiência , Animais , Afacia/genética , Discinesia Induzida por Medicamentos/genética , Discinesia Induzida por Medicamentos/patologia , Regulação da Expressão Gênica , Proteínas de Homeodomínio , Hipotálamo/patologia , Camundongos Endogâmicos C57BL , Neostriado/metabolismo , Neostriado/patologia , Oxidopamina , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reprodutibilidade dos Testes , Regulação para Cima
20.
Metab Eng ; 52: 20-28, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30389612

RESUMO

Terpenoids are the most diverse natural products with many industrial applications and are all synthesized from simple precursors, isopentenyl diphosphate (IPP) and its isomer dimethylallyl diphosphate (DMAPP). In plants, IPP is synthesized by two distinct metabolic pathways - cytosolic mevalonate (MVA) pathway for C15 sesquiterpene and C30 triterpene, and plastidic methylerythritol phosphate (MEP) pathway for C10 monoterpene and C20 diterpene. A number of studies have altered the metabolic gene expressions in either the MVA or MEP pathway to increase terpene production; however, it remains unknown if the alteration of the acetyl-CoA pool in plastid fatty acid biosynthesis can influence terpenoid flux. Here, we focused on the fact that acetyl-CoA is the precursor for both fatty acid biosynthesis in plastid and terpene biosynthesis in cytosol, and the metabolic impact of increased plastidic acetyl-CoA level on the cytosolic terpene biosynthesis was investigated. In tobacco leaf infiltration studies, the acetyl-CoA carboxylase complex (the enzyme supplying malonyl-CoA in plastid) was partially inhibited by overexpressing the inactive form of biotin carboxyl carrier protein (BCCP) by a negative dominant effect. Overexpression of BCCP showed 1.4-2.4-fold increase of sesquiterpenes in cytosol; however, surprisingly overexpression of BCCP linked to truncated HMG-CoA reductase (tHMGR) by a cleavable peptide 2A showed 20-40-fold increases of C15 sesquiterpenes (α-bisabolol, amorphadiene, and valerenadiene) and a 6-fold increase of C30 ß-amyrin. α-Bisabolol and ß-amyrin production reached 28.8 mg g-1 and 9.8 mg g-1 dry weight, respectively. Detailed analyses showed that a large increase in flux was achieved by the additive effect of BCCP- and tHMGR-overexpression, and an enhanced tHMGR activity by 2A peptide tag. Kinetic analyses showed that tHMGR-2A has a three-fold higher kcat value than tHMGR. The tHMGR-2A-BCCP1 co-expression strategy in this work provides a new insight into metabolic cross-talks and can be a generally applicable approach to over-produce sesqui- and tri-terpene in plants.


Assuntos
Acetil-CoA Carboxilase/metabolismo , Proteínas de Transporte/metabolismo , Hidroximetilglutaril-CoA Redutases/metabolismo , Nicotiana/metabolismo , Sesquiterpenos/metabolismo , Triterpenos/metabolismo , Acetilcoenzima A/metabolismo , Citosol/metabolismo , Ácido Graxo Sintase Tipo II/metabolismo , Ácidos Graxos/biossíntese , Hidroximetilglutaril-CoA Redutases/genética , Malonil Coenzima A/metabolismo , Sesquiterpenos Monocíclicos , Folhas de Planta/metabolismo , Nicotiana/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...