Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Clin Physiol Funct Imaging ; 42(5): 308-319, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35522086

RESUMO

Optical coherence tomography (OCT) is an imaging methodology that can be used to assess human airways. OCT avoids the harmful effects of ionizing radiation and has a high spatial resolution making it well suited for imaging the structure of small airways. Analysis of OCT airway images has typically been performed manually by tracing the airway with a relatively high coefficient of variation. The purpose of this study was to develop an analysis tool to reduce the inter- and intra-observer reproducibility of OCT and improve the ability to detect differences in airways. OCT images from healthy, young human volunteers were used to develop and test the OCT software. Measurement software was developed to allow the conversion of the original image into a grayscale image and was followed by an enhancement operation to brighten the image, and contour measurement. A total of 140 OCT images, 70 small (<2 mm) and 70 medium (2-4 mm) sized airways were analyzed. The inter- and intraobserver reproducibility of airway measurements ranged for strong to very strong in the small-sized airways. For medium-sized airways the reproducibility was considered moderate. Bland-Altman bias was low between observers and observations for all measures. The minimal detectable differences in the airway measurements with our semi-automated software were lower relative to manual tracing in medium-sized airways. Our software improves the ability to perform quantitative OCT analysis and may help to quantify the extent of airway remodelling in respiratory disease or elite athletes in future studies.


Assuntos
Software , Tomografia de Coerência Óptica , Humanos , Reprodutibilidade dos Testes , Tomografia de Coerência Óptica/métodos
2.
Sci Rep ; 9(1): 19387, 2019 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-31852939

RESUMO

Correlation between the resistive switching characteristics of Au/Zn-doped CeO2/Au devices and ionic mobility of CeO2 altered by the dopant concentration were explored. It was found that the ionic mobility of CeO2 has a profound effect on the operating voltages of the devices. The magnitude of operating voltage was observed to decrease when the doping concentration of Zn was increased up to 14%. After further increasing the doping level to 24%, the device hardly exhibits any resistive switching. At a low doping concentration, only isolated Vo existed in the CeO2 lattice. At an intermediate doping concentration, the association between dopant and Vo formed (Zn, Vo)× defect clusters. Low number density of these defect clusters initially favored the formation of Vo filament and led to a reduction in operating voltage. As the size and number density of (Zn, Vo)× defect clusters increased at a higher doping concentration, the ionic conductivity was limited with the trapping of isolated Vo by these defect clusters, which resulted in the diminishing of resistive switching. This research work provides a strategy for tuning the mobility of Vo to modulate resistive switching characteristics for non-volatile memory applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...