Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 177
Filtrar
1.
Bioorg Med Chem ; 106: 117735, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38714021

RESUMO

Numerous natural antimicrobial peptides (AMPs) exhibit a cationic amphipathic helical conformation, wherein cationic amino acids, such as lysine and arginine, play pivotal roles in antimicrobial activity by aiding initial attraction to negatively charged bacterial membranes. Expanding on our previous work, which introduced a de novo design of amphipathic helices within cationic heptapeptides using an 'all-hydrocarbon peptide stapling' approach, we investigated the impact of lysine-homologue substitution on helix formation, antimicrobial activity, hemolytic activity, and proteolytic stability of these novel AMPs. Our results demonstrate that substituting lysine with ornithine enhances both the antimicrobial activity and proteolytic stability of the stapled heptapeptide AMP series, while maintaining low hemolytic activity. This finding underscores lysine-homologue substitution as a valuable strategy for optimizing the therapeutic potential of diverse cationic AMPs.


Assuntos
Antibacterianos , Peptídeos Catiônicos Antimicrobianos , Hemólise , Lisina , Testes de Sensibilidade Microbiana , Lisina/química , Lisina/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/síntese química , Hemólise/efeitos dos fármacos , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/síntese química , Relação Estrutura-Atividade , Proteólise/efeitos dos fármacos , Humanos , Estrutura Molecular
2.
Antibiotics (Basel) ; 13(5)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38786127

RESUMO

Klebsiella pneumoniae causes severe human diseases, but its resistance to current antibiotics is increasing. Therefore, new antibiotics to eradicate K. pneumoniae are urgently needed. Bacterial toxin-antitoxin (TA) systems are strongly correlated with physiological processes in pathogenic bacteria, such as growth arrest, survival, and apoptosis. By using structural information, we could design the peptides and small-molecule compounds that can disrupt the binding between K. pneumoniae MazE and MazF, which release free MazF toxin. Because the MazEF system is closely implicated in programmed cell death, artificial activation of MazF can promote cell death of K. pneumoniae. The effectiveness of a discovered small-molecule compound in bacterial cell killing was confirmed through flow cytometry analysis. Our findings can contribute to understanding the bacterial MazEF TA system and developing antimicrobial agents for treating drug-resistant K. pneumoniae.

3.
Biophys Chem ; 309: 107228, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38552402

RESUMO

ß-lactam antibiotics are the most successful and commonly used antibacterial agents, but the emergence of resistance to these drugs has become a global health threat. The expression of ß-lactamase enzymes produced by pathogens, which hydrolyze the amide bond of the ß-lactam ring, is the major mechanism for bacterial resistance to ß-lactams. In particular, among class A, B, C and D ß-lactamases, metallo-ß-lactamases (MBLs, class B ß-lactamases) are considered crucial contributors to resistance in gram-negative bacteria. To combat ß-lactamase-mediated resistance, great efforts have been made to develop ß-lactamase inhibitors that restore the activity of ß-lactams. Some ß-lactamase inhibitors, such as diazabicyclooctanes (DBOs) and boronic acid derivatives, have also been approved by the FDA. Inhibitors used in the clinic can inactivate mostly serine-ß-lactamases (SBLs, class A, C, and D ß-lactamases) but have not been effective against MBLs until now. In order to develop new inhibitors particularly for MBLs, various attempts have been suggested. Based on structural and mechanical studies of MBL enzymes, several MBL inhibitor candidates, including taniborbactam in phase 3 and xeruborbactam in phase 1, have been introduced in recent years. However, designing potent inhibitors that are effective against all subclasses of MBLs is still extremely challenging. This review summarizes not only the types of ß-lactamase and mechanisms by which ß-lactam antibiotics are inactivated, but also the research finding on ß-lactamase inhibitors targeting these enzymes. These detailed information on ß-lactamases and their inhibitors could give valuable information for novel ß-lactamase inhibitors design.


Assuntos
Antibacterianos , Inibidores de beta-Lactamases , Inibidores de beta-Lactamases/farmacologia , Inibidores de beta-Lactamases/química , Inibidores de beta-Lactamases/uso terapêutico , Antibacterianos/farmacologia , Antibacterianos/química , beta-Lactamas/metabolismo , beta-Lactamas/farmacologia , beta-Lactamases , Resistência Microbiana a Medicamentos
4.
Adv Mater ; 36(19): e2308837, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38351715

RESUMO

As large molecular tertiary structures, some proteins can act as small robots that find, bind, and chaperone target protein clients, showing the potential to serve as smart building blocks in self-assembly fields. Instead of using such intrinsic functions, most self-assembly methodologies for proteins aim for de novo-designed structures with accurate geometric assemblies, which can limit procedural flexibility. Here, a strategy enabling polymorphic clustering of quaternary proteins, exhibiting simplicity and flexibility of self-assembling paths for proteins in forming monodisperse quaternary cage particles is presented. It is proposed that the enzyme protomer DegQ, previously solved at low resolution, may potentially be usable as a threefold symmetric building block, which can form polyhedral cages incorporated by the chaperone action of DegQ in the presence of protein clients. To obtain highly monodisperse cage particles, soft, and hence, less resistive client proteins, which can program the inherent chaperone activity of DegQ to efficient formations of polymorphic cages, depending on the size of clients are utilized. By reconstructing the atomic resolution cryogenic electron microscopy DegQ structures using obtained 12- and 24-meric clusters, the polymorphic clustering of DegQ enzymes is validated in terms of soft and rigid domains, which will provide effective routes for protein self-assemblies with procedural flexibility.


Assuntos
Estrutura Quaternária de Proteína , Modelos Moleculares , Microscopia Crioeletrônica , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo
5.
Life (Basel) ; 14(2)2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38398734

RESUMO

Bacteria and archaea respond and adapt to environmental stress conditions by modulating the toxin-antitoxin (TA) system for survival. Within the bacterium Helicobacter pylori, the protein HP0894 is a key player in the HP0894-HP0895 TA system, in which HP0894 serves as a toxin and HP0895 as an antitoxin. HP0894 has intrinsic ribonuclease (RNase) activity that regulates gene expression and translation, significantly influencing bacterial physiology and survival. This activity is influenced by the presence of metal ions such as Mg2+. In this study, we explore the metal-dependent RNase activity of HP0894. Surprisingly, all tested metal ions lead to a reduction in RNase activity, with zinc ions (Zn2+) causing the most significant decrease. The secondary structure of HP0894 remained largely unaffected by Zn2+ binding, whereas structural rigidity was notably increased, as revealed using CD analysis. NMR characterized the Zn2+ binding, implicating numerous His, Asp, and Glu residues in HP0894. In summary, these results suggest that metal ions play a regulatory role in the RNase activity of HP0894, contributing to maintaining the toxin molecule in an inactive state under normal conditions.

6.
Protein Sci ; 32(6): e4644, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37070717

RESUMO

Polyketide metabolism-associated proteins in Mycobacterium tuberculosis play an essential role in the survival of the bacterium, which makes them potential drug targets for the treatment of tuberculosis (TB). The novel ribonuclease protein Rv1546 is predicted to be a member of the steroidogenic acute regulatory protein-related lipid-transfer (START) domain superfamily, which comprises bacterial polyketide aromatase/cyclases (ARO/CYCs). Here, we determined the crystal structure of Rv1546 in a V-shaped dimer. The Rv1546 monomer consists of four α-helices and seven antiparallel ß-strands. Interestingly, in the dimeric state, Rv1546 forms a helix-grip fold, which is present in START domain proteins, via three-dimensional domain swapping. Structural analysis revealed that the conformational change of the C-terminal α-helix of Rv1546 might contribute to the unique dimer structure. Site-directed mutagenesis followed by in vitro ribonuclease activity assays was performed to identify catalytic sites of the protein. This experiment suggested that surface residues R63, K84, K88, and R113 are important in the ribonuclease function of Rv1546. In summary, this study presents the structural and functional characterization of Rv1546 and supplies new perspectives for exploiting Rv1546 as a novel drug target for TB treatment.


Assuntos
Mycobacterium tuberculosis , Policetídeos , Ribonucleases , Dimerização , Modelos Moleculares , Proteínas
7.
Sci Adv ; 9(16): eadf8582, 2023 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-37083534

RESUMO

Aurora kinase A (AURKA) performs critical functions in mitosis. Thus, the activity and subcellular localization of AURKA are tightly regulated and depend on diverse factors including interactions with the multiple binding cofactors. How these different cofactors regulate AURKA to elicit different levels of activity at distinct subcellular locations and times is poorly understood. Here, we identified a conserved region of CEP192, the major cofactor of AURKA, that mediates the interaction with AURKA. Quantitative binding studies were performed to map the interactions of a conserved helix (Helix-1) within CEP192. The crystal structure of Helix-1 bound to AURKA revealed a distinct binding site that is different from other cofactor proteins such as TPX2. Inhibiting the interaction between Helix-1 and AURKA in cells led to the mitotic defects, demonstrating the importance of the interaction. Collectively, we revealed a structural basis for the CEP192-mediated AURKA regulation at the centrosome, which is distinct from TPX2-mediated regulation on the spindle microtubule.


Assuntos
Aurora Quinase A , Fuso Acromático , Aurora Quinase A/genética , Aurora Quinase A/metabolismo , Fuso Acromático/metabolismo , Centrossomo/metabolismo , Microtúbulos/metabolismo , Mitose
8.
Antibiotics (Basel) ; 12(4)2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-37106997

RESUMO

Type II toxin-antitoxin (TA) modules are prevalent in prokaryotes and are involved in cell maintenance and survival under harsh environmental conditions, including nutrient deficiency, antibiotic treatment, and human immune responses. Typically, the type II TA system consists of two protein components: a toxin that inhibits an essential cellular process and an antitoxin that neutralizes its toxicity. Antitoxins of type II TA modules typically contain the structured DNA-binding domain responsible for TA transcription repression and an intrinsically disordered region (IDR) at the C-terminus that directly binds to and neutralizes the toxin. Recently accumulated data have suggested that the antitoxin's IDRs exhibit variable degrees of preexisting helical conformations that stabilize upon binding to the corresponding toxin or operator DNA and function as a central hub in regulatory protein interaction networks of the type II TA system. However, the biological and pathogenic functions of the antitoxin's IDRs have not been well discussed compared with those of IDRs from the eukaryotic proteome. Here, we focus on the current state of knowledge about the versatile roles of IDRs of type II antitoxins in TA regulation and provide insights into the discovery of new antibiotic candidates that induce toxin activation/reactivation and cell death by modulating the regulatory dynamics or allostery of the antitoxin.

9.
Antioxidants (Basel) ; 12(2)2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36830089

RESUMO

Aurora kinase A (AURKA), which is a member of serine/threonine kinase family, plays a critical role in regulating mitosis. AURKA has drawn much attention as its dysregulation is critically associated with various cancers, leading to the development of AURKA inhibitors, a new class of anticancer drugs. As the spatiotemporal activity of AURKA critically depends on diverse intra- and inter-molecular factors, including its interaction with various protein cofactors and post-translational modifications, each of these pathways should be exploited for the development of a novel class of AURKA inhibitors other than ATP-competitive inhibitors. Several lines of evidence have recently shown that redox-active molecules can modify the cysteine residues located on the kinase domain of AURKA, thereby regulating its activity. In this review, we present the current understanding of how oxidative modifications of cysteine residues of AURKA, induced by redox-active molecules, structurally and functionally regulate AURKA and discuss their implications in the discovery of novel AURKA inhibitors.

10.
Antibiotics (Basel) ; 11(10)2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-36289996

RESUMO

Antimicrobial peptides (AMPs) have received increasing attention as potential alternatives for future antibiotics because of the rise of multidrug-resistant (MDR) bacteria. AMPs are small cationic peptides with broad-spectrum antibiotic activities and different action mechanisms to those of traditional antibiotics. Despite the desirable advantages of developing peptide-based antimicrobial agents, the clinical applications of AMPs are still limited because of their enzymatic degradation, toxicity, and selectivity. In this review, structural modifications, such as amino acid substitution, stapling, cyclization of peptides, and hybrid AMPs with conventional antibiotics or other peptides, will be presented. Additionally, nanodelivery systems using metals or lipids to deliver AMPs will be discussed based on the structural properties and action mechanisms of AMPs.

11.
IUCrJ ; 9(Pt 5): 625-631, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36071804

RESUMO

Type II toxin-antitoxin (TA) systems encode two proteins: a toxin that inhibits cell growth and an antitoxin that neutralizes the toxin by direct inter-molecular protein-protein inter-actions. The bacterial HipBA TA system is implicated in persister formation. The Haemophilus influenzae HipBA TA system consists of a HipB antitoxin and a HipA toxin, the latter of which is split into two fragments, and here we investigate this novel three-com-ponent regulatory HipBA system. Structural and functional analysis revealed that HipAN corresponds to the N-ter-minal part of HipA from other bacteria and toxic HipAC is inactivated by HipAN, not HipB. This study will be helpful in understanding the detailed regulatory mechanism of the HipBAN+C system, as well as why it is constructed as a three-com-ponent system.

12.
Biochem Biophys Res Commun ; 616: 19-25, 2022 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-35636251

RESUMO

Toxin - Antitoxin systems are crucial for bacterial survival against harsh circumstances such as antibiotic treatment. The VapBC systems are the most abundant Toxin-Antitoxin systems among the Toxin - Antitoxin systems in the Mycobacterium tuberculosis. The VapBC43 system is one of them, which is related to the response to the vancomycin treatment. However, the structure of the VapBC43 complex remained unknown. Here, we present the crystal structure of the VapBC43 complex in which a single VapB43 molecule binds to the VapC43 dimer. The electrophoretic mobility shift assay shows that the VapB43 can bind to its promoter DNA. In addition, this structure reveals that the VapC43 contains a PIN (PilT N-terminus) domain motif which is essential for ribonuclease activity but has less conserved acidic residues than other homologs. The results of ribonuclease assays show that the VapC43 exhibits ribonuclease activity despite the lack of acidic residues which are well conserved in a PIN domain superfamily. Based on the previous finding that the VapBC43 contributes to the survival of Mycobacterium tuberculosis under vancomycin treatment, the structural information of the VapBC43 complex may enable the development of the inhibitor of VapC43 that can be used as an adjuvant for vancomycin therapy against M. tuberculosis.


Assuntos
Antitoxinas , Toxinas Bacterianas , Mycobacterium tuberculosis , Antitoxinas/química , Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/química , Modelos Moleculares , Mycobacterium tuberculosis/metabolismo , Ribonucleases/química , Vancomicina
13.
Acta Crystallogr D Struct Biol ; 78(Pt 4): 424-434, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35362466

RESUMO

D-Alanylation of the teichoic acids of the Gram-positive bacterial cell wall plays crucial roles in bacterial physiology and virulence. Deprivation of D-alanine from the teichoic acids of Staphylococcus aureus impairs biofilm and colony formation, induces autolysis and ultimately renders methicillin-resistant S. aureus highly susceptible to antimicrobial agents and host defense peptides. Hence, the D-alanylation pathway has emerged as a promising antibacterial target against drug-resistant S. aureus. D-Alanylation of teichoic acids is mediated via the action of four proteins encoded by the dlt operon, DltABCD, all four of which are essential for the process. In order to develop novel antimicrobial agents against S. aureus, the D-alanyl carrier protein ligase DltA, which is the first protein in the D-alanylation pathway, was focused on. Here, the crystal structure of DltA from the methicillin-resistant S. aureus strain Mu50 is presented, which reveals the unique molecular details of the catalytic center and the role of the P-loop. Kinetic analysis shows that the enantioselectivity of S. aureus DltA is much higher than that of DltA from other species. In the presence of DltC, the enzymatic activity of DltA is increased by an order of magnitude, suggesting a new exploitable binding pocket. This discovery may pave the way for a new generation of treatments for drug-resistant S. aureus.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Staphylococcus aureus , Proteínas de Bactérias/química , Proteínas de Transporte/metabolismo , Cinética , Ligases , Staphylococcus aureus Resistente à Meticilina/metabolismo
14.
Nucleic Acids Res ; 50(4): 2319-2333, 2022 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-35141752

RESUMO

Staphylococcus aureus is a notorious and globally distributed pathogenic bacterium. New strategies to develop novel antibiotics based on intrinsic bacterial toxin-antitoxin (TA) systems have been recently reported. Because TA systems are present only in bacteria and not in humans, these distinctive systems are attractive targets for developing antibiotics with new modes of action. S. aureus PemIK is a type II TA system, comprising the toxin protein PemK and the labile antitoxin protein PemI. Here, we determined the crystal structures of both PemK and the PemIK complex, in which PemK is neutralized by PemI. Our biochemical approaches, including fluorescence quenching and polarization assays, identified Glu20, Arg25, Thr48, Thr49, and Arg84 of PemK as being important for RNase function. Our study indicates that the active site and RNA-binding residues of PemK are covered by PemI, leading to unique conformational changes in PemK accompanied by repositioning of the loop between ß1 and ß2. These changes can interfere with RNA binding by PemK. Overall, PemK adopts particular open and closed forms for precise neutralization by PemI. This structural and functional information on PemIK will contribute to the discovery and development of novel antibiotics in the form of peptides or small molecules inhibiting direct binding between PemI and PemK.


Assuntos
Antitoxinas , Staphylococcus aureus , Antibacterianos/metabolismo , Antitoxinas/genética , Antitoxinas/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , RNA/metabolismo , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo
15.
J Pediatr Urol ; 17(4): 442.e1-442.e7, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34092512

RESUMO

INTRODUCTION: Urethral catheterization (CATH) and suprapubic aspiration (SA) are reliable methods of collecting urine for the diagnosis of urinary tract infections (UTIs), but both are invasive and difficult. Therefore, urine collection through a sterile urine bag (SUB) is commonly used for UTI screening. However, when pyuria is found in SUB specimens, it is difficult to interpret whether this result is true or false. OBJECTIVE: We aimed to determine the diagnostic performance of the urinary NAG/Cr ratio in detecting true pyuria in SUB specimens for children with suspected UTIs. STUDY DESIGN: This retrospective study included children 2-24 months of age presenting to the pediatric emergency department (PED) and in whom urinary NAG and creatinine levels were measured and a urine culture was performed between January 1, 2018, and December 31, 2019. Children with the presence of pyuria in SUB specimens were categorized into true or false pyuria groups depending on whether pyuria was present in CATH specimens. The diagnostic performance of the urinary NAG/Cr ratio in detecting true pyuria was identified using receiver operating characteristic (ROC) curve analysis. The optimal cutoff was calculated based on ROC curve analysis. Sensitivity, specificity, and positive and negative likelihood ratios were assessed for optimal cutoff values. RESULTS: Among 606 children with measured urinary NAG levels, 144 children with pyuria in SUB specimens were included in the analyses. Pyuria was consistently present in the CATH specimens of 67 (46.5%) children and absent in those of 77 (44.5%) children. The urinary NAG/Cr ratio was significantly higher in the true pyuria group than in the false pyuria group (21.5 IU/g; 95% confidence interval [CI]: 12.3-35.6; vs 9.6 IU/g; 95% CI: 6.7-16.1, P < 0.001). The area under the ROC curve (AUC) for the urinary NAG/Cr ratio was 0.776 (95% CI: 0.700-0.851). The optimal cutoff of 18.85 IU/g corresponded to the best combination of sensitivity (58.2, 95% CI: 46.4-70.0) and specificity (83.3, 95% CI: 74.7-91.6), with positive and negative likelihood ratios of 3.49 (95% CI: 2.04-5.97) and 0.50 (95% CI: 0.37-0.68), respectively. CONCLUSION: The urinary NAG/Cr ratio may be a potential indicator discriminating true pyuria from false pyuria in SUB specimens in the PED. However, large prospective studies are required to implement the NAG/Cr ratio in clinical practice.


Assuntos
Piúria , Infecções Urinárias , Acetilglucosaminidase , Criança , Creatinina , Humanos , Piúria/diagnóstico , Estudos Retrospectivos , Infecções Urinárias/diagnóstico
16.
IUCrJ ; 8(Pt 3): 362-371, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33953923

RESUMO

Bacterial toxin-antitoxin (TA) systems correlate strongly with physiological processes in bacteria, such as growth arrest, survival and apoptosis. Here, the first crystal structure of a type II TA complex structure of Klebsiella pneumoniae at 2.3 Šresolution is presented. The K. pneumoniae MazEF complex consists of two MazEs and four MazFs in a heterohexameric assembly. It was estimated that MazEF forms a dodecamer with two heterohexameric MazEF complexes in solution, and a truncated complex exists in heterohexameric form. The MazE antitoxin interacts with the MazF toxin via two binding modes, namely, hydro-phobic and hydro-philic interactions. Compared with structural homologs, K. pneumoniae MazF shows distinct features in loops ß1-ß2, ß3-ß4 and ß4-ß5. It can be inferred that these three loops have the potential to represent the unique characteristics of MazF, especially various substrate recognition sites. In addition, K. pneumoniae MazF shows ribonuclease activity and the catalytic core of MazF lies in an RNA-binding pocket. Mutation experiments and cell-growth assays confirm Arg28 and Thr51 as critical residues for MazF ribonuclease activity. The findings shown here may contribute to the understanding of the bacterial MazEF TA system and the exploration of antimicrobial candidates to treat drug-resistant K. pneumoniae.

17.
CRISPR J ; 4(3): 448-458, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34042500

RESUMO

Anti-CRISPR (Acr) proteins are phage-borne inhibitors of the CRISPR-Cas immune system in archaea and bacteria. AcrIIC2 from prophages of Neisseria meningitidis disables the nuclease activity of type II-C Cas9, such that dimeric AcrIIC2 associates with the bridge helix (BH) region of Cas9 to compete with guide RNA loading. AcrIIC2 in solution readily assembles into oligomers of variable lengths, but the oligomeric states are not clearly understood. In this study, we investigated the dynamic assembly of AcrIIC2 oligomers, and identified key interactions underlying the self-association. We report that AcrIIC2 dimers associate into heterogeneous high-order oligomers with the equilibrium dissociation constant KD ∼8 µM. Oligomerization is driven by electrostatic interactions between charged residues, and rational mutagenesis produces a stable AcrIIC2 dimer with intact Cas9 binding. Remarkably, the BH peptide of Cas9 is unstructured in solution, and undergoes a coil-to-helix transition upon AcrIIC2 binding, revealing a unique folding-upon-binding mechanism for Acr recognition.


Assuntos
Proteína 9 Associada à CRISPR/genética , Sistemas CRISPR-Cas , Proteínas Virais/metabolismo , Bacteriófagos/metabolismo , Edição de Genes , Regulação Bacteriana da Expressão Gênica , Mutagênese , Neisseria/virologia , Neisseria meningitidis/genética , Neisseria meningitidis/metabolismo , RNA Guia de Cinetoplastídeos/genética
18.
Acta Crystallogr D Struct Biol ; 77(Pt 5): 587-598, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33950015

RESUMO

The metallo-ß-lactamase fold is the most abundant metal-binding domain found in two major kingdoms: bacteria and archaea. Despite the rapid growth in genomic information, most of these enzymes, which may play critical roles in cellular metabolism, remain uncharacterized in terms of structure and function. In this study, X-ray crystal structures of SAV1707, a hypothetical metalloenzyme from Staphylococcus aureus, and its complex with cAMP are reported at high resolutions of 2.05 and 1.55 Å, respectively, with a detailed atomic description. Through a functional study, it was verified that SAV1707 has Ni2+-dependent phosphodiesterase activity and Mn2+-dependent endonuclease activity, revealing a different metal selectivity depending on the reaction. In addition, the crystal structure of cAMP-bound SAV1707 shows a unique snapshot of cAMP that reveals the binding mode of the intermediate, and a key residue Phe511 that forms π-π interactions with cAMP was verified as contributing to substrate recognition by functional studies of its mutant. Overall, these findings characterized the relationship between the structure and function of SAV1707 and may provide further understanding of metalloenzymes possessing the metallo-ß-lactamase fold.


Assuntos
Endonucleases/química , Diester Fosfórico Hidrolases/química , Staphylococcus aureus/enzimologia , beta-Lactamases/química , Manganês/metabolismo , Níquel/metabolismo , Conformação Proteica
19.
Life (Basel) ; 11(5)2021 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-33922228

RESUMO

Interactions involving Epstein-Barr virus (EBV) LMP2A and Nedd4 family E3 ubiquitin-protein ligases promote the ubiquitination of LMP2A-associated proteins, which results in the perturbation of normal B-cell signaling. Here, we solved the solution structure of the WW2 domain of hAIP4 and investigated the binding mode involving the N-terminal domain of LMP2A and the WW2 domain. The WW2 domain presented a conserved WW domain scaffold with a three-stranded anti-parallel ß-sheet and bound two PY motifs via different binding mechanisms. Our NMR titration and ITC data demonstrated that the PY motifs of LMP2A can recognize and interact weakly with the XP groove of the WW2 domain (residues located around the third ß-strand), and then residues between two PY motifs optimize the binding by interacting with the loop 1 region of the WW2 domain. In particular, the residue Val15 in the hairpin loop region between ß1 and ß2 of the WW2 domain exhibited unique changes depending on the terminal residues of the PY motif. This result suggested that the hairpin loop is responsible for additional interactions outside the XP groove, and this hypothesis was confirmed in a deuterium exchange experiment. These weak but wide interactions can stabilize the complex formed between the PY and WW domains.

20.
Microorganisms ; 9(3)2021 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-33801872

RESUMO

The structure-function relationships of toxin-antitoxin (TA) systems from Mycobacterium tuberculosis have prompted the development of novel and effective antimicrobial agents that selectively target this organism. The artificial activation of toxins by peptide inhibitors can lead to the growth arrest and eventual death of bacterial cells. Optimizing candidate peptides by hydrocarbon α-helix stapling based on structural information from the VapBC TA system and in vitro systematic validation led to V26-SP-8, a VapC26 activator of M. tuberculosis. This compound exhibited highly enhanced activity and cell permeability owing to the stabilizing helical propensity of the peptide. These characteristics will increase its efficacy against multidrug-resistant tuberculosis and extensively drug-resistant tuberculosis. Similar approaches utilizing structural and biochemical information for new antibiotic targets opens a new era for developing TB therapies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...