Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
J Biomater Appl ; 38(6): 772-783, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38058117

RESUMO

Quaternary ammonium compounds (QACs) are recognized by the World Health Organization as a useful disinfectant against microbes. The synergistic effect of zwitterionic polymers with QACs as antimicrobial agents rather than QACs alone is yet to be investigated. A potential strategy is the use of covalent bonding to halt the release of minute antibacterials and a hierarchy of functional layers to detain and annihilate microbes. The strategy was tested on a polydimethylsiloxane (PDMS) surface on which quaternized poly(2-dimethylaminoethyl methacrylate) (qDMA+) and sulfobetaine (SBMA) were hierarchically functionalized. Attenuated total reflectance Fourier transform infrared analysis confirmed the quaternization of DMA to qDMA+, grafting of qDMA + on PDMS (PDMS-qDMA+), and grafting of the SBMA overlayer on PDMS-qDMA+ (PDMS-qDMA+-SB). Contact angle measurement showed that PDMS-qDMA + exhibited the lowest contact angle (26.2 ± 2.9°) compared with the hydrophobic PDMS (115.2 ± 1.6°), but that of PDMSqDMA+-SB increased to 56.3 ± 1.3°. The Escherichia coli survival count revealed that PDMS-qDMA+ and PDMS-qDMA+-SB exhibited significantly greater bactericidal ability than PDMS. Confocal laser scanning microscopy revealed fewer dead bacteria on PDMS-qDMA+-SB than on PDMS-qDMA+. Scanning electron microscopy demonstrated that E. coli was disintegrated on the functionalized surface via dual-end cell lysis. To the best of our knowledge, this is the first observation of this type of process. The results confirmed the potent antibacterial and cell disruption activities of the qDMA+ and SBMA modified PDMS surface.


Assuntos
Escherichia coli , Compostos de Amônio Quaternário , Polímeros/metabolismo , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Dimetilpolisiloxanos
2.
Int J Mol Sci ; 24(5)2023 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-36902368

RESUMO

OBJECTIVES: Titanium implants are regarded as a promising treatment modality for replacing missing teeth. Osteointegration and antibacterial properties are both desirable characteristics for titanium dental implants. The aim of this study was to create zinc (Zn)-, strontium (Sr)-, and magnesium (Mg)-multidoped hydroxyapatite (HAp) porous coatings, including HAp, Zn-doped HAp, and Zn-Sr-Mg-doped HAp, on titanium discs and implants using the vapor-induced pore-forming atmospheric plasma spraying (VIPF-APS) technique. METHODS: The mRNA and protein levels of osteogenesis-associated genes such as collagen type I alpha 1 chain (COL1A1), decorin (DCN), osteoprotegerin (TNFRSF11B), and osteopontin (SPP1) were examined in human embryonic palatal mesenchymal cells. The antibacterial effects against periodontal bacteria, including Porphyromonas gingivalis and Prevotella nigrescens, were investigated. In addition, a rat animal model was used to evaluate new bone formation via histologic examination and micro-computed tomography (CT). RESULTS: The ZnSrMg-HAp group was the most effective at inducing mRNA and protein expression of TNFRSF11B and SPP1 after 7 days of incubation, and TNFRSF11B and DCN after 11 days of incubation. In addition, both the ZnSrMg-HAp and Zn-HAp groups were effective against P. gingivalis and P. nigrescens. Furthermore, according to both in vitro studies and histologic findings, the ZnSrMg-HAp group exhibited the most prominent osteogenesis and concentrated bone growth along implant threads. SIGNIFICANCE: A porous ZnSrMg-HAp coating using VIPF-APS could serve as a novel technique for coating titanium implant surfaces and preventing further bacterial infection.


Assuntos
Durapatita , Osteogênese , Ratos , Humanos , Animais , Titânio/farmacologia , Magnésio , Zinco , Microtomografia por Raio-X , Hidroxiapatitas , Gases , Estrôncio , Materiais Revestidos Biocompatíveis , Propriedades de Superfície
3.
J Periodontal Res ; 58(1): 155-164, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36451314

RESUMO

BACKGROUNDS: Periodontitis is an oral-bacteria-directed disease that occurs worldwide. Currently, periodontal pathogens are mostly determined using traditional culture techniques, next-generation sequencing, and microbiological screening system. In addition to the well-known and cultivatable periodontal bacteria, we aimed to discover a novel periodontal pathogen by using DNA sequencing and investigate its role in the progression of periodontitis. OBJECTIVE: This study identified pathogens from subgingival dental plaque in patients with periodontitis by using the Oxford Nanopore Technology (ONT) third-generation sequencing system and validated the impact of selected pathogen in periodontitis progression by ligature-implanted mice. METHODS: Twenty-five patients with periodontitis and 25 healthy controls were recruited in this study. Subgingival plaque samples were collected for metagenomic analysis. The ONT third-generation sequencing system was used to confirm the dominant bacteria. A mouse model with ligature implantation and bacterial injection verified the pathogenesis of periodontitis. Neutrophil infiltration and osteoclast activity were evaluated using immunohistochemistry and tartrate-resistant acid phosphatase assays in periodontal tissue. Gingival inflammation was evaluated using pro-inflammatory cytokines in gingival crevicular fluids. Alveolar bone destruction in the mice was evaluated using micro-computed tomography and hematoxylin and eosin staining. RESULTS: Scardovia wiggsiae (S. wiggsiae) was dominant in the subgingival plaque of the patients with periodontitis. S. wiggsiae significantly deteriorated ligature-induced neutrophil infiltration, osteoclast activation, alveolar bone destruction, and the secretion of interleukin-6, monocyte chemoattractant protein-1, and tumor necrosis factor-α in the mouse model. CONCLUSION: Our metagenome results suggested that S. wiggsiae is a dominant flora in patients with periodontitis. In mice, the induction of neutrophil infiltration, proinflammatory cytokine secretion, osteoclast activation, and alveolar bone destruction further verified the pathogenic role of S. wiggsiae in the progress of periodontitis. Future studies investigating the metabolic interactions between S. wiggsiae and other periodontopathic bacteria are warranted.


Assuntos
Actinobacteria , Perda do Osso Alveolar , Placa Dentária , Periodontite , Camundongos , Animais , Microtomografia por Raio-X/efeitos adversos , Perda do Osso Alveolar/patologia , Periodontite/metabolismo , Bactérias , Placa Dentária/complicações
4.
J Prosthodont Res ; 66(4): 557-563, 2022 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-34759130

RESUMO

PURPOSE: To develop a novel resin for provisional prostheses using hyperbranched polyurethane acrylate (HBPUA) and triethylene glycol dimethacrylate (TEGDMA) with promising mechanical properties and low volumetric shrinkage. METHODS: Four groups including TIH3-0 (100 wt% TEGDMA), TIH3-30 (30 wt% HBPUA + 70 wt% TEGDMA), TIH3-60 (60 wt% HBPUA + 40 wt% TEGDMA), and TB-60 (60 wt% bisphenol A-glycidyl dimethacrylate + 40 wt% TEGDMA) were prepared and commercial Luxatemp (DMG) was used for comparison. Fourier transform infrared spectroscopy and gel permeation chromatography were used for material characterization. Mechanical properties including microhardness, flexural strength, flexural modulus, and load energy were measured before and after water immersion. Physical properties measurement included weight changes, solubility, water absorption, surface hydrophobicity, and volumetric shrinkage. Finally, biocompatibility was evaluated using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay. RESULTS: The number- and weight-average molecular weights of the HBPUA were approximately 870 and 1480, respectively. The addition of HBPUA to TEGDMA increased the mechanical strength considerably. Although the weight changes and water absorption of TIH3-60 were higher than those of Luxatemp, the microhardness, flexural strength, flexural modulus, load energy, solubility, shrinkage, and biocompatibility of TIH3-60 were either comparable or superior to those of Luxatemp. CONCLUSION: Based on the findings of the present study, TIH3-60 has potential for development as a new provisional material.


Assuntos
Implantes Dentários , Poliuretanos , Bis-Fenol A-Glicidil Metacrilato , Resinas Compostas/química , Teste de Materiais , Metacrilatos/química , Polietilenoglicóis/química , Polimerização , Ácidos Polimetacrílicos , Poliuretanos/química , Água/química
5.
J Periodontol ; 93(9): 1401-1410, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-34967007

RESUMO

BACKGROUND: Periodontal disease is a chronic inflammatory disease. Given its high prevalence, especially in aging population, the detailed mechanisms about pathogenesis of periodontal disease are important issues for study. Neutrophil firstly infiltrates to periodontal disease-associated pathogen loci and amplifies the inflammatory response for host defense. However, excessive neutrophil-secreted neutrophil elastase (NE) damages the affected gingival. In lung and esophageal epithelium, NE had been proved to upregulate several growth factors including placenta growth factor (PGF). PGF is an angiogenic factor with proinflammatory properties, which mediates the progression of inflammatory disease. Therefore, we hypothesize excessive NE upregulates PGF and participates in the pathogenesis and progression of periodontal disease. METHODS: In gingival epithelial cells (GEC), growth factors array demonstrated NE-increased growth factors and further be corroborated by Western blot assay and ELISA. The GEC inflammation was evaluated by ELISA. In mice, the immunohistochemistry results demonstrated ligature implantation-induced neutrophil infiltration and growth factor upregulation. By multiplex assay, the ligature-induced proinflammatory cytokines level in gingival crevicular fluid (GCF) were evaluated. Finally, alveolar bone absorption was analyzed by micro-CT images and H & E staining. RESULTS: NE upregulated PGF expression and secretion in GEC. PGF promoted GEC to secret IL-1ß, IL-6, and TNF-α in GCF In periodontal disease animal model, ligature implantation triggered NE infiltration and PGF expression. Blockade of PGF attenuated the ligature implantation-induced IL-1ß, IL-6, TNF-α and MIP-2 secretion and ameliorated the alveolar bone loss in mice. CONCLUSION: In conclusion, the NE-induced PGF triggers gingival epithelium inflammation and promotes the pathogenesis and progression of periodontal disease.


Assuntos
Gengivite , Doenças Periodontais , Animais , Camundongos , Indutores da Angiogênese/análise , Citocinas , Líquido do Sulco Gengival/química , Inflamação , Interleucina-6/análise , Elastase de Leucócito/análise , Fator de Crescimento Placentário/análise , Fator de Necrose Tumoral alfa/análise
6.
Sci Rep ; 11(1): 23954, 2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34907255

RESUMO

To investigate the effect of Er:YAG laser treatment on lipopolysaccharide (LPS) clearance and fibroblast adhesion on titanium disks. Grade IV titanium discs (n = 216) were used and allocated to 6 groups. Group 1 was the negative control without Porphyromonas gingivalis inoculation. Discs in Groups 2-6 were incubated with P. gingivalis to form a biofilm. Group 3 received 0.12% chlorhexidine irrigation and Group 4 received titanium curettage to remove the biofilm. Group 5 was treated with Er:YAG laser irradiation and Group 6 was treated with titanium curettage plus Er:YAG laser irradiation. The contact angle and surface roughness were measured after the various treatments. The surface microstructure and residual bacteria were examined using scanning electron microscopy and confocal laser scanning microscopy, respectively. Residual LPS was examined using a limulus amoebocyte lysate assay and human gingival fibroblast adhesion was quantified using fluorescent microscopy. Curettage plus Er:YAG laser irradiation was the most effective method for removing bacteria and LPS. No significant difference in the amount of fibroblast adhesion was found between the control and Group 6. Combined use of Er:YAG laser irradiation and curettage optimizes LPS clearance and fibroblast adhesion on titanium discs.


Assuntos
Biofilmes/crescimento & desenvolvimento , Desinfecção , Fibroblastos/metabolismo , Gengiva/metabolismo , Lipopolissacarídeos/química , Porphyromonas gingivalis/fisiologia , Titânio/química , Fibroblastos/ultraestrutura , Humanos , Lasers de Estado Sólido , Microscopia Eletrônica de Varredura , Porphyromonas gingivalis/ultraestrutura
7.
ACS Appl Bio Mater ; 4(3): 2523-2533, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35014370

RESUMO

The beneficial effects of Sr- and Mg-doped hydroxyapatite (HAp) on osteoblast proliferation and bone regeneration have been investigated in the past, and the antibacterial ability of Zn ions is well known. However, HAp coatings doped with these three elements via thermal spraying have not yet been investigated. In this study, HAp powder was synthesized at different pH values (4, 6, 8, and 10) and calcined at different temperatures (200, 400, 600, 800, and 1000 °C) to obtain HAp with the highest purity. Subsequently, strontium-, magnesium-, and zinc-doped HAp powders were synthesized at the optimal pH value and calcination temperature. The HAp powder was then coated onto Ti disks using atmospheric plasma spraying (APS) or vapor-induced pore-forming atmospheric plasma spraying (VIPF-APS) techniques at different working currents (350, 400, and 450 A) and spraying distances (10 and 15 cm). X-ray diffraction, Fourier transform infrared spectroscopy, and scanning electron microscopy equipped with energy-dispersive spectroscopy were used for material characterization to determine the optimal parameters. With these optimal coating parameters, HAp, Zn-HAp, SrMg-HAp, and ZnSrMg-HAp powders were deposited onto the Ti disks using VIPF-APS and named HAp-Ti, Zn-HAp-Ti, SrMg-HAp-Ti, and ZnSrMg-HAp-Ti, respectively. The in vitro bioactivity of these four groups was evaluated using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and alkaline phosphatase (ALPase) activity assay. Besides, the antibacterial activities against Prevotella nigrescens, Porphyromonas gingivalis, and Fusobacterium nucleatum were assessed. The results showed that the purity of HAp synthesized at pH 10 and 800 °C was 98.40%. A porous coating without cracks was obtained at a 10 cm spraying distance and 400 A working current using VIPF-APS. SrMg-HAp-Ti and ZnSrMg-HAp-Ti resulted in higher osteoblast proliferation and ALPase activity than the control. Moreover, both Zn-HAp-Ti and ZnSrMg-HAp-Ti exhibited antibacterial activity against the three bacteria. Therefore, ZnSrMg-HAp has potential as a coating for biomedical materials due to its ability to reduce bacterial infection and enhance osseointegration.


Assuntos
Antibacterianos/farmacologia , Atmosfera/química , Materiais Revestidos Biocompatíveis/farmacologia , Fusobacterium nucleatum/efeitos dos fármacos , Porphyromonas gingivalis/efeitos dos fármacos , Prevotella nigrescens/efeitos dos fármacos , Antibacterianos/síntese química , Antibacterianos/química , Materiais Revestidos Biocompatíveis/síntese química , Materiais Revestidos Biocompatíveis/química , Durapatita/química , Durapatita/farmacologia , Magnésio/química , Magnésio/farmacologia , Teste de Materiais , Testes de Sensibilidade Microbiana , Tamanho da Partícula , Porosidade , Estrôncio/química , Estrôncio/farmacologia , Propriedades de Superfície , Zinco/química , Zinco/farmacologia
8.
Colloids Surf B Biointerfaces ; 197: 111440, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33130522

RESUMO

Magnetic attachment system is used to embed in polymethyl methacrylate (PMMA) resin denture base to improve denture stability. However, dislodgement of magnetic attachments from denture base is a major clinical problem. This study is to evaluate the bond strength between PMMA and stainless steel using metal primer and atmospheric pressure plasma jet (APPJ) treatment. Stainless steel discs were treated with Single Bond Universal Adhesive; Palfique Universal Bond; Alloy Primer; heat treatment with Alloy Primer; and 10-s, 20-s, and 30-s APPJ treatment with Alloy Primer. The shear bond strength between PMMA and surface-treated stainless steel was measured using universal testing machine. The effects of N2 flow rate (60, 50, 40, 30 SLM), thermal cycling, and air quenching on shear bond strength were also investigated. The surface of each disc was examined using X-ray photoelectron spectroscopy and a goniometer. Finally, the temperature of plasma with various N2 flow rates was measured and the optical emission spectra of the plasma were measured using spectrometer. Alloy Primer produced the highest bond strength. APPJ treatment was effective at enhancing bond strength by cleaning the surface of contaminants. Moreover, APPJ treatment with air quenching increased surface O2-/OH- and Fe2O3/FeOOH ratios, reducing the negative influence of thermal cycling on bond strength. Alloy Primer with 20 s of APPJ treatment with a 50-SLM N2 flow rate and air quenching was the most effective at increasing bond strength.


Assuntos
Bases de Dentadura , Polimetil Metacrilato , Pressão Atmosférica , Ligas de Cromo , Fenômenos Magnéticos , Teste de Materiais , Metacrilatos , Resistência ao Cisalhamento , Aço Inoxidável , Aço , Propriedades de Superfície , Tionas
9.
Int J Biol Macromol ; 158: 627-635, 2020 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-32387616

RESUMO

This study aimed to evaluated the potential of core-shell poly(D,l-lactide-co-glycolide)-chitosan (PLGA-chitosan) nanospheres encapsulating simvastatin (SIM) and doxycycline (DOX) for promoting periodontal and large-sized osseous defects. SIM, and/or DOX were encapsulated in PLGA-chitosan nanospheres using double emulsion technique and were delivered to sites of experimental periodontitis and large-sized mandibular osseous defects of rats for 1-4 weeks. The resultant nanospheres were ~ 200 nm diameter with distinct core-shell structure and released SIM and DOX sustainably for 28 days. DOX and SIM-DOX nanospheres significantly inhibited P. gingivalis and S. sanguinis. In experimental periodontitis sites, SIM-DOX nanospheres significantly down-regulated IL-1b and MMP-8 and significantly reduced bone loss. In mandibular osseous defects, VEGF was up-regulated, and osteogenesis was significantly augmented with SIM nanospheres treatment. In conclusion, core-shell PLGA-chitosan nanospheres released SIM and DOX sustainably. SIM-DOX and SIM nanospheres could be considered to promote the repair of infected periodontal sites and non-infected osseous defects respectively.

10.
ACS Appl Bio Mater ; 3(1): 486-494, 2020 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35019465

RESUMO

In this study, a nanocomposite coating composed of polydopamine, functionalized poly(3,4-ethylenedioxythiophene) (PEDOT), and silver nanoparticles (AgNPs) was synthesized through layer-by-layer deposition. Biomimitic polydopamine and hydroxyl-functionalized PEDOT were used to enhance the adhesion strength. The deposition of PEDOT functionalized with zwitterionic phosphorylcholine can contribute to the antifouling property. After immersion in the AgNO3 solution, Ag+ ions were adsorbed on PEDOT films and further reduced to form AgNPs spontaneously, which conferred antibacterial properties on these nanocomposite films. Escherichia coli and Streptococcus mutans were chosen to represent two common Gram-negative and Gram-positive oral pathogens. We further conducted inductively coupled plasma mass spectrometry to confirm that the Ag+ ions released from these nanocomposite films did not exert adverse effects on the human body. These results suggested that, when applied to stainless steel orthodontic appliances, these durable antifouling and antibacterial coatings may be useful for avoiding bacterial infection.

11.
Int J Mol Sci ; 20(19)2019 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-31547104

RESUMO

Antibacterial resistance (ABR) poses an enormous threat to human health. ABR mainly develops due to bacteria being constantly exposed to diluted levels of disinfectants. Here, we propose a method for suppressing ABR through the chemical binding of disinfectants to polymethyl methacrylate (PMMA) device surfaces in solutions of 5%, 10%, and 20% disinfectant concentrations. PMMA discs were fabricated from a commercial orthodontic acrylic resin system (Ortho-Jet) and quaternary ammonium salts (QAS), 3-(trimethoxysilyl)-propyldimethyloctadecyl ammonium chloride (42% in methanol), were used as the disinfectant. The PMMA surfaces were activated in 3 M sulfuric acid at 80 °C for 5 h for the esterification of hydrolyzed QAS to PMMA. Fourier transform infrared difference spectra confirmed that the carboxy-terminated PMMA was chemically bound to the QAS. In vitro cell viability tests using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assays revealed that 5%QAS-c-PMMA was more biocompatible than 10%QAS-c-PMMA and 20%QAS-c-PMMA. The results of antibacterial tests and clinical trials demonstrated the excellent antibacterial power of 5%QAS-c-PMMA. This method is the first solution-based approach to successfully avoid disinfectant leakage and subsequent ABR, as revealed by mass spectrometry studies of the solution obtained by agitating the disinfectant-bound PMMA for 28 days.


Assuntos
Desinfetantes , Farmacorresistência Bacteriana/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Fibroblastos/metabolismo , Polimetil Metacrilato , Compostos de Amônio Quaternário , Streptococcus mutans/crescimento & desenvolvimento , Sobrevivência Celular/efeitos dos fármacos , Desinfetantes/química , Desinfetantes/farmacologia , Humanos , Polimetil Metacrilato/química , Polimetil Metacrilato/farmacologia , Compostos de Amônio Quaternário/química , Compostos de Amônio Quaternário/farmacologia
12.
Int J Mol Sci ; 19(9)2018 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-30223440

RESUMO

Although poly(2-hydroxyethyl methacrylate) (pHEMA) and polyethylene glycol methacrylate (PEGMA) have been demonstrated to inhibit bacterial adhesion, no study has compared antibacterial adhesion when salivary pellicle is coated on polymethyl methacrylate (PMMA) grafted with pHEMA and on PMMA grafted with PEGMA. In this study, PMMA discs were fabricated from a commercial orthodontic acrylic resin system (Ortho-Jet). Attenuated total reflection-Fourier transform infrared spectra taken before and after grafting confirmed that pHEMA and PEGMA were successfully grafted on PMMA. Contact angle measurements revealed PMMA-pHEMA to be the most hydrophilic, followed by PMMA-PEGMA, and then by PMMA. Zeta potential analysis revealed the most negative surface charges on PMMA-PEGMA, followed by PMMA-pHEMA, and then by PMMA. Confocal laser scanning microscopy showed green fluorescence in the background, indicating images that influenced the accuracy of the quantification of live bacteria. Both the optical density value measured at 600 nm and single plate-serial dilution spotting showed that pHEMA was more effective than PEGMA against Escherichia coli and Streptococcus mutans, although the difference was not significant. Therefore, the grafting of pHEMA and PEGMA separately on PMMA is effective against bacterial adhesion, even after the grafted PMMA were coated with salivary pellicle. Surface hydrophilicity, bactericidality, and Coulomb repulsion between the negatively charged bacteria and the grafted surface contributed to the effectiveness.


Assuntos
Antibacterianos/farmacologia , Aderência Bacteriana/efeitos dos fármacos , Materiais Revestidos Biocompatíveis , Película Dentária , Metacrilatos , Polietilenoglicóis , Polimetil Metacrilato , Antibacterianos/química , Bactérias/efeitos dos fármacos , Bactérias/crescimento & desenvolvimento , Materiais Revestidos Biocompatíveis/química , Película Dentária/química , Microscopia Confocal , Polimetil Metacrilato/química , Espectroscopia de Infravermelho com Transformada de Fourier
13.
Clin Implant Dent Relat Res ; 20(4): 583-591, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29939477

RESUMO

BACKGROUND: Studies have reported a high prevalence of peri-implantitis. The etiology of peri-implantitis remains unclear and no available treatments result in total resolution of established peri-implantitis. PURPOSE: To investigate the factors that interfere with osteoblast adhesion to contaminated titanium surfaces after different surface treatments. MATERIALS AND METHODS: Grade 4 titanium discs were randomly divided into 5 groups and each group was divided into 2 subgroups, with one contaminated with Aggregatibacter actinomycetemcomitans (A. actinomycetemcomitans), and the other contaminated with Porphyromonas gingivalis (P. gingivalis). Group 1 did not receive bacterial inoculation or surface debridement and served as a control. Group 2 received A. actinomycetemcomitans or P. gingivalis inoculation, separately. Group 3 received bacterial inoculation and titanium curette debridement, followed by normal saline irrigation. Group 4 received bacterial inoculation, curette debridement, normal saline irrigation, and ultrasonication. Group 5 received bacterial inoculation, curette debridement, normal saline irrigation, and placement in 0.12% chlorhexidine. After various surface treatments, the surface roughness and hydrophilicity of the titanium surface were measured, the number of adhered osteoblast cells was calculated, and the amount of residual lipopolysaccharide (LPS) was quantified. RESULTS: A. actinomycetemcomitans and P. gingivalis biofilms noticeably reduced surface hydrophilicity. Groups 3-5 showed decreased hydrophilicity and fewer adhered osteoblast cells compared with the control group. Although ultrasonication was more effective in removing LPS than curette debridement and chlorhexidine, cell adhesion was not as high as with clean titanium discs. CONCLUSIONS: The non-surgical treatment used in this study was not effective in removing LPS from titanium surfaces and increasing osteoblast adhesion. A more effective method to remove LPS completely is required to enhance the treatment outcome of peri-implantitis.


Assuntos
Adesão Celular , Contaminação de Equipamentos , Osteoblastos , Titânio/química , Aggregatibacter actinomycetemcomitans , Biofilmes/efeitos dos fármacos , Biofilmes/efeitos da radiação , Clorexidina/farmacologia , Desbridamento , Implantes Dentários/microbiologia , Interações Hidrofóbicas e Hidrofílicas , Lipopolissacarídeos/efeitos da radiação , Teste de Materiais , Peri-Implantite/etiologia , Porphyromonas gingivalis , Solução Salina/farmacologia , Propriedades de Superfície/efeitos dos fármacos , Propriedades de Superfície/efeitos da radiação , Ultrassom/métodos
14.
Int J Nanomedicine ; 13: 261-271, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29386894

RESUMO

Mineral trioxide aggregate (MTA) is the most frequently used repair material in endodontics, but the long setting time and reduced mechanical strength in acidic environments are major shortcomings. In this study, a novel sol-gel-derived calcium silicate cement (sCSC) was developed using an initial Ca/Si molar ratio of 3, with the most effective mixing orders of reactants and optimal HNO3 catalyst volumes. A Fourier transform infrared spectrometer, scanning electron microscope with energy-dispersive X-ray spectroscopy, and X-ray powder diffractometer were used for material characterization. The setting time, compressive strength, and microhardness of sCSC after hydration in neutral and pH 5 environments were compared with that of MTA. Results showed that sCSC demonstrated porous microstructures with a setting time of ~30 min, and the major components of sCSC were tricalcium silicate, dicalcium silicate, and calcium oxide. The optimal formula of sCSC was sn200, which exhibited significantly higher compressive strength and microhardness than MTA, irrespective of neutral or pH 5 environments. In addition, both sn200 and MTA demonstrated good biocompatibility because cell viability was similar to that of the control. These findings suggest that sn200 merits further clinical study for potential application in endodontic repair of perforations.


Assuntos
Endodontia/métodos , Géis/química , Cimento de Silicato/química , Animais , Cálcio/química , Compostos de Cálcio/química , Força Compressiva , Polpa Dentária/citologia , Polpa Dentária/efeitos dos fármacos , Endodontia/instrumentação , Concentração de Íons de Hidrogênio , Teste de Materiais , Óxidos/química , Porosidade , Difração de Pó , Ratos , Cimento de Silicato/efeitos adversos , Silicatos/química , Espectrometria por Raios X , Espectroscopia de Infravermelho com Transformada de Fourier , Fatores de Tempo , Difração de Raios X
15.
Int J Nanomedicine ; 12: 5473-5485, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28814864

RESUMO

Statin at appropriate concentrations has been shown to induce odontoblastic differentiation, dentinogenesis, and angiogenesis. However, using a carrier to control statin release might reduce toxicity and enhance its therapeutic effects. The aim of this study was to prepare poly(d,l-lactide-co-glycolide acid) (PLGA) nanoparticles that contain lovastatin for application in direct pulp capping. The PLGA-lovastatin particle size was determined using dynamic light scattering measurements and transmission electron microscopy. In addition, the release of lovastatin was quantified using a UV-Vis spectrophotometer. The cytotoxicity and alkaline phosphatase (ALP) activity of PLGA-lovastatin nanoparticles on human dental pulp cells were investigated. Moreover, a real-time polymerase chain reaction (PCR) assay, Western blot analysis, and an enzyme-linked immunosorbent assay (ELISA) were used to examine the osteogenesis gene and protein expression of dentin sialophosphoprotein (DSPP), dentin matrix acidic phosphoprotein 1 (DMP1), and osteocalcin (OCN). Finally, PLGA-lovastatin nanoparticles and mineral trioxide aggregate (MTA) were compared as direct pulp capping materials in Wistar rat teeth. The results showed that the median diameter of PLGA-lovastatin nanoparticles was 174.8 nm and the cumulative lovastatin release was 92% at the 44th day. PLGA-lovastatin nanoparticles demonstrated considerably a lower cytotoxicity than free lovastatin at 5, 9, and 13 days of culture. For ALP activity, the ALP amount of PLGA-lovastatin (100 µg/mL) was significantly higher than that of the other groups for 9 and 13 days of culture. The real-time PCR assay, Western blot analysis, and ELISA assay showed that PLGA-lovastatin (100 µg/mL) induced the highest mRNA and protein expression of DSPP, DMP1, and OCN in pulp cells. Histological evaluation of the animal studies revealed that MTA was superior to the PLGA-lovastatin in stimulating the formation of tubular dentin in an observation period of 2 weeks. However, in an observation period of 4 weeks, it was evident that the PLGA-lovastatin and MTA were competitive in the formation of tubular reparative dentin and a complete dentinal bridge.


Assuntos
Capeamento da Polpa Dentária/métodos , Ácido Láctico/química , Lovastatina/farmacocinética , Nanopartículas/química , Ácido Poliglicólico/química , Fosfatase Alcalina/metabolismo , Compostos de Alumínio/metabolismo , Animais , Compostos de Cálcio/metabolismo , Diferenciação Celular/efeitos dos fármacos , Preparações de Ação Retardada/farmacologia , Polpa Dentária/citologia , Combinação de Medicamentos , Ensaio de Imunoadsorção Enzimática , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Humanos , Lovastatina/farmacologia , Dente Serotino , Nanopartículas/administração & dosagem , Osteogênese/genética , Óxidos/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Ratos Wistar , Sialoglicoproteínas/genética , Sialoglicoproteínas/metabolismo , Silicatos/metabolismo
16.
Carbohydr Polym ; 151: 790-802, 2016 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-27474626

RESUMO

Currently used guided tissue regeneration (GTR) membranes are mainly used as a barrier to prevent epithelial cells growth into defects before new bone formation. The aim of this study was to develop a tri-layer functional chitosan (CS) membrane with epigallocatechin-3-gallate (EGCG) grafted on the outer layer for bactericidal activity, and lovastatin was included in the middle layer for controlled release. Successful EGCG grafting was demonstrated using Fourier transform infrared spectroscopy and EGCG grafting significantly enhanced adhesion and proliferation of human gingival fibroblasts. The release duration of lovastatin reached 21days. CS-Lovastatin1 produced the highest alkaline phosphatase activity and EGCG14-CS exhibited the best bactericidal activity against periodontopathic bacteria. Finally, the EGCG14-CS-Lovastatin1 membrane showed a higher percentage of bone regeneration than BioMend(®) and control groups in one-walled defects of beagle dogs. These results suggest that the EGCG14-CS-Lovastatin1 membrane has the potential to be used as a novel GTR membrane.


Assuntos
Antibacterianos/química , Catequina/análogos & derivados , Quitosana/química , Portadores de Fármacos/química , Regeneração Tecidual Guiada , Lovastatina/química , Membranas Artificiais , Fosfatase Alcalina/metabolismo , Animais , Antibacterianos/farmacologia , Antibacterianos/toxicidade , Catequina/química , Adesão Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Preparações de Ação Retardada , Cães , Portadores de Fármacos/farmacologia , Portadores de Fármacos/toxicidade , Liberação Controlada de Fármacos , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Gengiva/citologia , Gengiva/efeitos dos fármacos , Humanos , Masculino , Resistência à Tração
17.
Int J Nanomedicine ; 11: 285-97, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26848264

RESUMO

Chronic periodontitis is characterized by inflammation of periodontal tissues, leading to bone resorption and tooth loss. The goal of treatment is to regenerate periodontal tissues including bone and cementum lost as a consequence of disease. The local delivery of tetracycline was proven to be effective in controlling localized periodontal infection without apparent side effects. Previous studies suggested that lovastatin has a significant role in new bone formation; however, the local delivery of lovastatin might enhance its therapeutic effects. A number of local delivery devices have been developed recently, including poly(D,L-lactide-co-glycolide acid) (PLGA) nanoparticles. The aim of this study was to develop a local delivery device, PLGA-lovastatin-chitosan-tetracycline nanoparticles, which allows the sequential release of tetracycline and lovastatin to effectively control local infection and promote bone regeneration in periodontitis. The size and microstructure of nanoparticles were examined by transmission electron microscopy, Nanoparticle Size Analyzer, and Fourier transform infrared spectroscopy. The release of tetracycline and lovastatin was quantified using a UV-Vis spectrophotometer. Furthermore, the cytotoxic effect and alkaline phosphatase activity of the nanoparticles in osteoblast cell cultures as well as antibacterial activity against periodontal pathogens were investigated. Finally, the bone regeneration potential of PLGA nanoparticles in three-walled defects in beagle dogs was investigated. The results indicated that PLGA-lovastatin-chitosan-tetracycline nanoparticles showed good biocompatibility, antibacterial activity, and increased alkaline phosphatase activity. The volumetric analysis from micro-CT revealed significantly increased new bone formation in defects filled with nanoparticles in dogs. This novel local delivery device might be useful as an adjunctive treatment in periodontal regenerative therapy.


Assuntos
Regeneração Óssea/efeitos dos fármacos , Quitosana/química , Portadores de Fármacos/administração & dosagem , Ácido Láctico/química , Lovastatina/administração & dosagem , Nanopartículas/administração & dosagem , Ácido Poliglicólico/química , Tetraciclina/administração & dosagem , Fosfatase Alcalina/metabolismo , Animais , Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Preparações de Ação Retardada/administração & dosagem , Cães , Portadores de Fármacos/química , Lovastatina/química , Lovastatina/farmacologia , Masculino , Microscopia Eletrônica de Transmissão , Nanopartículas/química , Osteoblastos/citologia , Osteoblastos/efeitos dos fármacos , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Tetraciclina/química , Tetraciclina/farmacologia
18.
Dent Mater ; 32(1): 114-24, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26657904

RESUMO

OBJECTIVE: The detachment of fiber posts from root canals is primarily caused by the loss of adhesion between dentin and cement; therefore, the purpose of this study was to formulate a novel resin cement that improves the bond strength of fiber posts to the dentin-cement interface. METHODS: Three concentrations (30, 35, and 40wt.%) of bis[2-(methacryloyloxy)-ethyl] phosphate (2MP) were prepared as dentin bonding agent components. Isobornyl acrylate (IBOA) and ethylhexylacrylate (EHA) were used as key components to fabricate the resin cement (named IE cement). The adhesive strengths of IE cement to coronal and root canal dentin were tested after placement of specimens in a water bath at 100% humidity and 37°C for either 24h or 5 months. The microtensile bond test, the push-out bond test, and the fracture toughness test were performed. Four commercially available resin cements (Nexus(®) third generation (NX3), Variolink II, RelyX Unicem, and Panavia F 2.0) were used for comparisons. X-ray photoelectron spectroscopy (XPS) was used to analyze the interaction of collagen extracted from human dentin and 2MP as well as the fracture surfaces of the specimens submitted to the microtensile bond test. RESULTS: The 35% concentration of 2MP, in combination with IBOA and EHA, was the most effective for improving the IE cement's bond strength to dentin. The XPS results revealed that the phosphate groups of 2MP formed hydrogen bonds with the collagen and that such bonds prominently decreased in number in the specimens that were stored for 5 months. SIGNIFICANCE: The combination of 2MP, IBOA, and EHA can effectively increase the adhesive strength of IE cement to dentin via hydrogen bond formation.


Assuntos
Acrilatos/química , Adesivos Dentinários/química , Cimentos de Resina/química , Adesivos Dentinários/síntese química , Humanos , Ligação de Hidrogênio , Teste de Materiais , Cimentos de Resina/síntese química , Propriedades de Superfície , Resistência à Tração
19.
Sci Rep ; 5: 13352, 2015 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-26293361

RESUMO

There is no topically applicable low concentration fluoride delivery device available for caries prevention. This study was aimed to assess the use of a low concentration (1450 ppm) fluoride strip as an effective fluoride delivery system against enamel demineralization. The enamel surface composition and calcium-deficient hydroxyapatite or toothpaste treatments were investigated using X-ray photoelectron spectroscopy. In vitro enamel demineralization was assayed using a pH cycling model and the dissolution of calcium ions from the treated specimens was quantified using ion chromatography. After 24-hr fluoride-strip treatment, the enamel was covered with a CaF2 layer which showed a granular morphology of 1 µm in size. Below the CaF2 layer was a region of mixed fluorapatite and CaF2. Fluoride infiltrated extensively in enamel to produce highly fluorinated fluorohydroxyapatite. In comparison, low-fluoride-level fluorinated fluorohydroxyapatite was formed on the enamel specimen exposed to toothpaste. The treatments with the fluoride strip as short as 1 hr significantly inhibited enamel demineralization. The fluoride strip was effective for topical fluoride delivery and inhibited in vitro demineralization of enamel by forming CaF2 and fluoride-containing apatites at the enamel surface. It exhibited the potential as an effective fluoride delivery device for general use in prevention of caries.

20.
Dent Mater ; 31(6): 695-701, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25888003

RESUMO

OBJECTIVE: The objective was to develop a new tissue conditioner using acetyl tributyl citrate (ATBC), tributyl citrate (TBC), and a novel hyperbranched polyester (TAH) with long-term stable viscoelasticity. METHODS: Plasticizers, i.e., ATBC, TBC, TAH (number-average molecular weight, 1306 g/mol; weight-average molecular weight, 4245 g/mol), butyl phthalyl butyl glycolate (BPBG), dibutyl phthalate (DBP), benzyl benzoate (BB), Shofu Tissue Conditioner II (Shofu), and GC Soft-Liner (GC), in nine combinations (ATBC+TAH, TBC+TAH, ATBC, TBC, BPBG, DBP, BB, Shofu, and GC), with gelation times between 120 and 180 s were used; Shofu and GC were used for comparison. The dynamic viscoelasticity properties, i.e., shear storage modulus (G'), shear loss modulus (G"), loss tangent (tanδ), and complex dynamic shear modulus (G*) were determined at 37°C, using a rheometer, after immersion in water for 0, 1, 3, 7, 14, and 28 d. The surface hydrophobicity was examined using a static contact angle analyzer, and the biocompatibility was evaluated using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay. Weight changes, solubility, and water absorption were measured using an analytical balance. RESULTS: TAH addition increased the viscoelastic stability; ATBC+TAH was the most stable among the tested groups. TAH decreased the contact angle and increased the water absorption, but decreased the ATBC solubility. The ATBC+TAH group biocompatibility was similar to those of the control group. SIGNIFICANCE: The developed ATBC+TAH plasticizer has potential applications as a new tissue conditioner. Its clinical efficacy needs to be evaluated in clinical trials.


Assuntos
Citratos/química , Plastificantes/química , Poliésteres/química , Benzoatos/química , Materiais Biocompatíveis/química , Dibutilftalato/análogos & derivados , Dibutilftalato/química , Elasticidade , Teste de Materiais , Metacrilatos/química , Metilmetacrilatos , Ácidos Ftálicos/química , Solubilidade , Propriedades de Superfície , Viscosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...