Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Arch Biochem Biophys ; 730: 109426, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36202216

RESUMO

Selenophosphate synthetase (SEPHS) was originally discovered in prokaryotes as an enzyme that catalyzes selenophosphate synthesis using inorganic selenium and ATP as substrates. However, in contrast to prokaryotes, two paralogs, SEPHS1 and SEPHS2, occur in many eukaryotes. Prokaryotic SEPHS, also known as SelD, contains either cysteine (Cys) or selenocysteine (Sec) in the catalytic domain. In eukaryotes, only SEPHS2 carries out selenophosphate synthesis and contains Sec at the active site. However, SEPHS1 contains amino acids other than Sec or Cys at the catalytic position. Phylogenetic analysis of SEPHSs reveals that the ancestral SEPHS contains both selenophosphate synthesis and another unknown activity, and that SEPHS1 lost the selenophosphate synthesis activity. The three-dimensional structure of SEPHS1 suggests that its homodimer is unable to form selenophosphate, but retains ATPase activity to produce ADP and inorganic phosphate. The most prominent function of SEPHS1 is that it is implicated in the regulation of cellular redox homeostasis. Deficiency of SEPHS1 leads to the disturbance in the expression of genes involved in redox homeostasis. Different types of reactive oxygen species (ROS) are accumulated in response to SEPHS deficiency depending on cell or tissue types. The accumulation of ROS causes pleiotropic effects such as growth retardation, apoptosis, DNA damage, and embryonic lethality. SEPHS1 deficiency in mouse embryos affects retinoic signaling and other related signaling pathways depending on the embryonal stage until the embryo dies at E11.5. Dysregulated SEPHS1 is associated with the pathogenesis of various diseases including cancer, Crohn's disease, and osteoarthritis.


Assuntos
Selênio , Selenocisteína , Animais , Camundongos , Difosfato de Adenosina , Adenosina Trifosfatases , Trifosfato de Adenosina/metabolismo , Cisteína , Fosfatos , Filogenia , Espécies Reativas de Oxigênio
2.
Nat Commun ; 13(1): 779, 2022 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-35140209

RESUMO

Aging and mechanical overload are prominent risk factors for osteoarthritis (OA), which lead to an imbalance in redox homeostasis. The resulting state of oxidative stress drives the pathological transition of chondrocytes during OA development. However, the specific molecular pathways involved in disrupting chondrocyte redox homeostasis remain unclear. Here, we show that selenophosphate synthetase 1 (SEPHS1) expression is downregulated in human and mouse OA cartilage. SEPHS1 downregulation impairs the cellular capacity to synthesize a class of selenoproteins with oxidoreductase functions in chondrocytes, thereby elevating the level of reactive oxygen species (ROS) and facilitating chondrocyte senescence. Cartilage-specific Sephs1 knockout in adult mice causes aging-associated OA, and augments post-traumatic OA, which is rescued by supplementation of N-acetylcysteine (NAC). Selenium-deficient feeding and Sephs1 knockout have synergistic effects in exacerbating OA pathogenesis in mice. Therefore, we propose that SEPHS1 is an essential regulator of selenium metabolism and redox homeostasis, and its dysregulation governs the progression of OA.


Assuntos
Homeostase , Osteoartrite/genética , Osteoartrite/metabolismo , Fosfotransferases/deficiência , Fosfotransferases/genética , Envelhecimento , Animais , Cartilagem Articular/metabolismo , Condrócitos/metabolismo , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Knockout , Oxirredução , Estresse Oxidativo , Espécies Reativas de Oxigênio , Selênio/metabolismo , Selenoproteínas , Transcriptoma
3.
Int J Mol Sci ; 22(21)2021 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-34769076

RESUMO

The primary function of selenophosphate synthetase (SEPHS) is to catalyze the synthesis of selenophosphate that serves as a selenium donor during selenocysteine synthesis. In eukaryotes, there are two isoforms of SEPHS (SEPHS1 and SEPHS2). Between these two isoforms, only SEPHS2 is known to contain selenophosphate synthesis activity. To examine the function of SEPHS1 in endothelial cells, we introduced targeted null mutations to the gene for SEPHS1, Sephs1, in cultured mouse 2H11 endothelial cells. SEPHS1 deficiency in 2H11 cells resulted in the accumulation of superoxide and lipid peroxide, and reduction in nitric oxide. Superoxide accumulation in Sephs1-knockout 2H11 cells is due to the induction of xanthine oxidase and NADPH oxidase activity, and due to the decrease in superoxide dismutase 1 (SOD1) and 3 (SOD3). Superoxide accumulation in 2H11 cells also led to the inhibition of cell proliferation and angiogenic tube formation. Sephs1-knockout cells were arrested at G2/M phase and showed increased gamma H2AX foci. Angiogenic dysfunction in Sephs1-knockout cells is mediated by a reduction in nitric oxide and an increase in ROS. This study shows for the first time that superoxide was accumulated by SEPHS1 deficiency, leading to cell dysfunction through DNA damage and inhibition of cell proliferation.


Assuntos
Células Endoteliais/metabolismo , Estresse Oxidativo , Fosfotransferases/genética , Animais , Linhagem Celular , Células Endoteliais/patologia , Deleção de Genes , Técnicas de Inativação de Genes , Células HEK293 , Humanos , Peroxidação de Lipídeos , Camundongos , Fosfotransferases/metabolismo , Espécies Reativas de Nitrogênio/genética , Espécies Reativas de Nitrogênio/metabolismo , Superóxidos/metabolismo
4.
Int J Mol Sci ; 22(21)2021 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-34769078

RESUMO

Selenophosphate synthetase 1 (SEPHS1) plays an essential role in cell growth and survival. However, the underlying molecular mechanisms remain unclear. In the present study, the pathways regulated by SEPHS1 during gastrulation were determined by bioinformatical analyses and experimental verification using systemic knockout mice targeting Sephs1. We found that the coagulation system and retinoic acid signaling were most highly affected by SEPHS1 deficiency throughout gastrulation. Gene expression patterns of altered embryo morphogenesis and inhibition of Wnt signaling were predicted with high probability at E6.5. These predictions were verified by structural abnormalities in the dermal layer of Sephs1-/- embryos. At E7.5, organogenesis and activation of prolactin signaling were predicted to be affected by Sephs1 knockout. Delay of head fold formation was observed in the Sephs1-/- embryos. At E8.5, gene expression associated with organ development and insulin-like growth hormone signaling that regulates organ growth during development was altered. Consistent with these observations, various morphological abnormalities of organs and axial rotation failure were observed. We also found that the gene sets related to redox homeostasis and apoptosis were gradually enriched in a time-dependent manner until E8.5. However, DNA damage and apoptosis markers were detected only when the Sephs1-/- embryos aged to E9.5. Our results suggest that SEPHS1 deficiency causes a gradual increase of oxidative stress which changes signaling pathways during gastrulation, and afterwards leads to apoptosis.


Assuntos
Gastrulação , Regulação da Expressão Gênica no Desenvolvimento , Camundongos/embriologia , Fosfotransferases/genética , Animais , Perda do Embrião/genética , Perda do Embrião/metabolismo , Perda do Embrião/patologia , Feminino , Deleção de Genes , Camundongos/genética , Camundongos/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosfotransferases/metabolismo , Gravidez , Transdução de Sinais
5.
Front Microbiol ; 12: 660901, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34025614

RESUMO

Viruses have evolved diverse strategies to manipulate cellular signaling pathways in order to promote infection and/or persistence. Human cytomegalovirus (HCMV) possesses a number of unique properties that allow the virus to alter cellular events required for infection of a diverse array of host cell types and long-term persistence. Of specific importance is infection of bone marrow derived and myeloid lineage cells, such as peripheral blood monocytes and CD34+ hematopoietic progenitor cells (HPCs) because of their essential role in dissemination of the virus and for the establishment of latency. Viral induced signaling through the Epidermal Growth Factor Receptor (EGFR) and other receptors such as integrins are key control points for viral-induced cellular changes and productive and latent infection in host organ systems. This review will explore the current understanding of HCMV strategies utilized to hijack cellular signaling pathways, such as EGFR, to promote the wide-spread dissemination and the classic life-long herpesvirus persistence.

6.
Exp Mol Med ; 52(8): 1198-1208, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32788658

RESUMO

As an essential nutrient and trace element, selenium is required for living organisms and its beneficial roles in human health have been well recognized. The role of selenium is mainly played through selenoproteins synthesized by the selenium metabolic system. Selenoproteins have a wide range of cellular functions including regulation of selenium transport, thyroid hormones, immunity, and redox homeostasis. Selenium deficiency contributes to various diseases, such as cardiovascular disease, cancer, liver disease, and arthropathy-Kashin-Beck disease (KBD) and osteoarthritis (OA). A skeletal developmental disorder, KBD has been reported in low-selenium areas of China, North Korea, and the Siberian region of Russia, and can be alleviated by selenium supplementation. OA, the most common form of arthritis, is a degenerative disease caused by an imbalance in matrix metabolism and is characterized by cartilage destruction. Oxidative stress serves as a major cause of the initiation of OA pathogenesis. Selenium deficiency and dysregulation of selenoproteins are associated with impairments to redox homeostasis in cartilage. We review the recently explored roles of selenium metabolism and selenoproteins in cartilage with an emphasis on two arthropathies, KBD and OA. Moreover, we discuss the potential of therapeutic strategies targeting the biological functions of selenium and selenoproteins for OA treatment.


Assuntos
Cartilagem/metabolismo , Homeostase , Artropatias/metabolismo , Selênio/metabolismo , Selenoproteínas/metabolismo , Animais , Humanos , Modelos Biológicos
7.
Artigo em Inglês | MEDLINE | ID: mdl-32850474

RESUMO

Viral dissemination is a key mechanism responsible for persistence and disease following human cytomegalovirus (HCMV) infection. Monocytes play a pivotal role in viral dissemination to organ tissue during primary infection and following reactivation from latency. For example, during primary infection, infected monocytes migrate into tissues and differentiate into macrophages, which then become a source of viral replication. In addition, because differentiated macrophages can survive for months to years, they provide a potential persistent infection source in various organ systems. We broadly note that there are three phases to infection and differentiation of HCMV-infected monocytes: (1) Virus enters and traffics to the nucleus through a virus receptor ligand engagement event that activates a unique signalsome that initiates the monocyte-to-macrophage differentiation process. (2) Following initial infection, HCMV undergoes a "quiescence-like state" in monocytes lasting for several weeks and promotes monocyte differentiation into macrophages. While, the initial event is triggered by the receptor-ligand engagement, the long-term cellular activation is maintained by chronic viral-mediated signaling events. (3) Once HCMV infected monocytes differentiate into macrophages, the expression of immediate early viral (IE) genes is detectable, followed by viral replication and long term infectious viral particles release. Herein, we review the detailed mechanisms of each phase during infection and differentiation into macrophages and discuss the biological significance of the differentiation of monocytes in the pathogenesis of HCMV.


Assuntos
Infecções por Citomegalovirus , Citomegalovirus , Diferenciação Celular , Células Cultivadas , Humanos , Monócitos , Replicação Viral
8.
Viruses ; 10(10)2018 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-30274264

RESUMO

Human cytomegalovirus (HCMV) infection of peripheral blood monocytes plays a key role in the hematogenous dissemination of the virus to multiple organ systems following primary infection or reactivation of latent virus in the bone marrow. Monocytes have a short life span of 1⁻3 days in circulation; thus, HCMV must alter their survival and differentiation to utilize these cells and their differentiated counterparts-macrophages-for dissemination and long term viral persistence. Because monocytes are not initially permissive for viral gene expression and replication, HCMV must control host-derived factors early during infection to prevent apoptosis or programmed cell death prior to viral induced differentiation into naturally long-lived macrophages. This review provides a short overview of HCMV infection of monocytes and describes how HCMV has evolved to utilize host cell anti-apoptotic pathways to allow infected monocytes to bridge the 48⁻72 h viability gate so that differentiation into a long term stable mature cell can occur. Because viral gene expression is delayed in monocytes following initial infection and only occurs (begins around two to three weeks post infection in our model) following what appears to be complete differentiation into mature macrophages or dendritic cells, or both; virally-encoded anti-apoptotic gene products cannot initially control long term infected cell survival. Anti-apoptotic viral genes are discussed in the second section of this review and we argue they would play an important role in long term macrophage or dendritic cell survival following infection-induced differentiation.


Assuntos
Apoptose , Infecções por Citomegalovirus/virologia , Citomegalovirus/imunologia , Regulação Viral da Expressão Gênica/genética , Monócitos/virologia , Proteínas Virais/imunologia , Diferenciação Celular , Sobrevivência Celular , Citomegalovirus/genética , Humanos , Macrófagos/imunologia , Macrófagos/virologia , Monócitos/imunologia
9.
Free Radic Biol Med ; 127: 190-197, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-29715549

RESUMO

Selenophosphate synthetase (SEPHS) synthesizes selenophosphate, the active selenium donor, using ATP and selenide as substrates. SEPHS was initially identified and isolated from bacteria and has been characterized in many eukaryotes and archaea. Two SEPHS paralogues, SEPHS1 and SEPHS2, occur in various eukaryotes, while prokaryotes and archaea have only one form of SEPHS. Between the two isoforms in eukaryotes, only SEPHS2 shows catalytic activity during selenophosphate synthesis. Although SEPHS1 does not contain any significant selenophosphate synthesis activity, it has been reported to play an essential role in regulating cellular physiology. Prokaryotic SEPHS contains a cysteine or selenocysteine (Sec) at the catalytic domain. However, in eukaryotes, SEPHS1 contains other amino acids such as Thr, Arg, Gly, or Leu at the catalytic domain, and SEPHS2 contains only a Sec. Sequence comparisons, crystal structure analyses, and ATP hydrolysis assays suggest that selenophosphate synthesis occurs in two steps. In the first step, ATP is hydrolyzed to produce ADP and gamma-phosphate. In the second step, ADP is further hydrolyzed and selenophosphate is produced using gamma-phosphate and selenide. Both SEPHS1 and SEPHS2 have ATP hydrolyzing activities, but Cys or Sec is required in the catalytic domain for the second step of reaction. The gene encoding SEPHS1 is divided by introns, and five different splice variants are produced by alternative splicing in humans. SEPHS1 mRNA is abundant in rapidly proliferating cells such as embryonic and cancer cells and its expression is induced by various stresses including oxidative stress and salinity stress. The disruption of the SEPHS1 gene in mice or Drosophila leads to the inhibition of cell proliferation, embryonic lethality, and morphological changes in the embryos. Targeted removal of SEPHS1 mRNA in insect, mouse, and human cells also leads to common phenotypic changes similar to those observed by in vivo gene knockout: the inhibition of cell growth/proliferation, the accumulation of hydrogen peroxide in mammals and an unidentified reactive oxygen species (ROS) in Drosophila, and the activation of a defense system. Hydrogen peroxide accumulation in SEPHS1-deficient cells is mainly caused by the down-regulation of genes involved in ROS scavenging, and leads to the inhibition of cell proliferation and survival. However, the mechanisms underlying SEPHS1 regulation of redox homeostasis are still not understood.


Assuntos
Proliferação de Células/fisiologia , Homeostase/fisiologia , Animais , Humanos , Oxirredução , Fosfotransferases/fisiologia
10.
mBio ; 9(2)2018 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-29691342

RESUMO

The ability of human cytomegalovirus (HCMV) to reactivate from latent infection of hematopoietic progenitor cells (HPCs) is intimately linked to cellular differentiation. HCMV encodes UL7 that our group has shown is secreted from infected cells and induces angiogenesis. In this study, we show that UL7 is a ligand for Fms-like tyrosine kinase 3 receptor (Flt-3R), a well-known critical factor in HPC differentiation. We observed that UL7 directly binds Flt-3R and induces downstream signaling cascades, including phosphatidylinositol 3-kinase (PI3K)/Akt and mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) pathways. Importantly, we show that UL7 protein induces differentiation of both CD34+ HPCs and CD14+ monocytes. Last, we show that an HCMV mutant lacking UL7 fails to reactivate in CD34+ HPCs in vitro as well as in humanized mice. These observations define the first virally encoded differentiation factor with significant implications not only for HCMV reactivation but also for alteration of the hematopoietic compartment in transplant patients.IMPORTANCE Human cytomegalovirus (HCMV) remains a significant cause of morbidity and mortality in allogeneic hematopoietic stem cell transplant recipients. CD34+ hematopoietic progenitor cells (HPCs) represent a critical reservoir of latent HCMV in the transplant population, thereby providing a source of virus for dissemination to visceral organs. HCMV reactivation has been linked to HPC/myeloid cellular differentiation; however, the mechanisms involved in these events are poorly understood at the molecular level. In this study, we show that a viral protein is a ligand for Fms-like tyrosine kinase 3 receptor (Flt-3R) and that the binding of HCMV UL7 to the Flt-3R triggers HPC and monocyte differentiation. Moreover, the loss of UL7 prevents viral reactivation in HPCs in vitro as well as in humanized mice. These observations define the first virally encoded differentiation factor with significant implications not only for HCMV reactivation but also for alteration of the hematopoietic compartment in transplant patients.


Assuntos
Diferenciação Celular , Citomegalovirus/fisiologia , Glicoproteínas/metabolismo , Células-Tronco Hematopoéticas/virologia , Interações Hospedeiro-Patógeno , Proteínas do Envelope Viral/metabolismo , Ativação Viral , Tirosina Quinase 3 Semelhante a fms/metabolismo , Células Cultivadas , Humanos , Ligação Proteica , Transdução de Sinais
11.
Methods Mol Biol ; 1661: 43-60, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-28917036

RESUMO

The selenocysteine (Sec) tRNA[Ser]Sec population consists of two isoforms that differ from each other by a single 2'-O-methylribosyl moiety at position 34 (Um34). These two isoforms, which are encoded in a single gene, Trsp, and modified posttranscriptionally, are involved individually in the synthesis of two subclasses of selenoproteins, designated housekeeping and stress-related selenoproteins. Techniques used in obtaining these isoforms for their characterization include extraction of RNA from mammalian cells and tissues, purifying the tRNA[Ser]Sec population by one or more procedures, and finally resolving the two isoforms from each other. Since some of the older techniques for isolating tRNA[Ser]Sec and resolving the isoforms are used in only a few laboratories, these procedures will be discussed briefly and references provided for more detailed information, while the more recently developed procedures are discussed in detail. In addition, a novel technique that was developed in sequencing tRNA[Ser]Sec for identifying their occurrence in other organisms is also presented.


Assuntos
RNA de Transferência Aminoácido-Específico/genética , Selenoproteínas/genética , Animais , Northern Blotting , Cromatografia de Afinidade , Cromatografia de Fase Reversa , Humanos , Marcação por Isótopo , Conformação de Ácido Nucleico , Biossíntese de Proteínas , RNA de Transferência Aminoácido-Específico/química , Radioisótopos de Selênio , Selenoproteínas/química , Selenoproteínas/isolamento & purificação , Análise de Sequência de RNA
12.
Sci Rep ; 7(1): 17553, 2017 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-29242531

RESUMO

Kashin-Beck disease (KBD) is a deformative, endemic osteochondropathy involving degeneration and necrosis of growth plates and articular cartilage. The pathogenesis of KBD is related to gene expression and regulation mechanisms, but long noncoding RNAs (lncRNAs) in KBD have not been investigated. In this study, we identified 316 up-regulated and 631 down-regulated lncRNAs (≥ 2-fold change) in KBD chondrocytes using microarray analysis, of which more than three-quarters were intergenic lncRNAs and antisense lncRNAs. We also identified 232 up-regulated and 427 down-regulated mRNAs (≥ 2-fold change). A lncRNA-mRNA correlation analysis combined 343 lncRNAs and 292 mRNAs to form 509 coding-noncoding gene co-expression networks (CNC networks). Eleven lncRNAs were predicted to have cis-regulated target genes, including NAV2 (neuron navigator 2), TOX (thymocyte selection-associated high mobility group box), LAMA4 (laminin, alpha 4), and DEPTOR (DEP domain containing mTOR-interacting protein). The differentially expressed mRNAs in KBD significantly contribute to biological events associated with the extracellular matrix. Meanwhile, 34 mRNAs and 55 co-expressed lncRNAs constituted a network that influences the extracellular matrix. In the network, FBLN1 and LAMA 4 were the core genes with the highest significance. These novel findings indicate that lncRNAs may play a role in extracellular matrix destruction in KBD.


Assuntos
Matriz Extracelular/metabolismo , Perfilação da Expressão Gênica , Doença de Kashin-Bek/genética , Doença de Kashin-Bek/patologia , RNA Longo não Codificante/genética , Idoso , Regulação para Baixo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Regulação para Cima
13.
J Virol ; 91(24)2017 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-29021395

RESUMO

Human cytomegalovirus (HCMV) infects peripheral blood monocytes and triggers biological changes that promote viral dissemination and persistence. We have shown that HCMV induces a proinflammatory state in infected monocytes, resulting in enhanced monocyte motility and transendothelial migration, prolonged monocyte survival, and differentiation toward a long-lived M1-like macrophage phenotype. Our data indicate that HCMV triggers these changes, in the absence of de novo viral gene expression and replication, through engagement and activation of epidermal growth factor receptor (EGFR) and integrins on the surface of monocytes. We previously identified that HCMV induces the upregulation of multiple proinflammatory gene ontologies, with the interferon-associated gene ontology exhibiting the highest percentage of upregulated genes. However, the function of the HCMV-induced interferon (IFN)-stimulated genes (ISGs) in infected monocytes remained unclear. We now show that HCMV induces the enhanced expression and activation of a key ISG transcriptional regulator, signal transducer and activator of transcription (STAT1), via an IFN-independent but EGFR- and integrin-dependent signaling pathway. Furthermore, we identified a biphasic activation of STAT1 that likely promotes two distinct phases of STAT1-mediated transcriptional activity. Moreover, our data show that STAT1 is required for efficient early HCMV-induced enhanced monocyte motility and later for HCMV-induced monocyte-to-macrophage differentiation and for the regulation of macrophage polarization, suggesting that STAT1 may serve as a molecular convergence point linking the biological changes that occur at early and later times postinfection. Taken together, our results suggest that HCMV reroutes the biphasic activation of a traditionally antiviral gene product through an EGFR- and integrin-dependent pathway in order to help promote the proviral activation and polarization of infected monocytes.IMPORTANCE HCMV promotes multiple functional changes in infected monocytes that are required for viral spread and persistence, including their enhanced motility and differentiation/polarization toward a proinflammatory M1 macrophage. We now show that HCMV utilizes the traditionally IFN-associated gene product, STAT1, to promote these changes. Our data suggest that HCMV utilizes EGFR- and integrin-dependent (but IFN-independent) signaling pathways to induce STAT1 activation, which may allow the virus to specifically dictate the biological activity of STAT1 during infection. Our data indicate that HCMV utilizes two phases of STAT1 activation, which we argue molecularly links the biological changes that occur following initial binding to those that continue to occur days to weeks following infection. Furthermore, our findings may highlight a unique mechanism for how HCMV avoids the antiviral response during infection by hijacking the function of a critical component of the IFN response pathway.


Assuntos
Movimento Celular , Infecções por Citomegalovirus/genética , Citomegalovirus/patogenicidade , Monócitos/citologia , Fator de Transcrição STAT1/genética , Diferenciação Celular , Polaridade Celular , Células Cultivadas , Infecções por Citomegalovirus/metabolismo , Receptores ErbB/genética , Receptores ErbB/metabolismo , Redes Reguladoras de Genes , Humanos , Integrinas/genética , Integrinas/metabolismo , Monócitos/metabolismo , Monócitos/virologia , Fator de Transcrição STAT1/metabolismo , Transdução de Sinais , Ativação Transcricional , Regulação para Cima
14.
J Biol Chem ; 291(46): 24036-24040, 2016 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-27645994

RESUMO

The human genome contains 25 genes coding for selenocysteine-containing proteins (selenoproteins). These proteins are involved in a variety of functions, most notably redox homeostasis. Selenoprotein enzymes with known functions are designated according to these functions: TXNRD1, TXNRD2, and TXNRD3 (thioredoxin reductases), GPX1, GPX2, GPX3, GPX4, and GPX6 (glutathione peroxidases), DIO1, DIO2, and DIO3 (iodothyronine deiodinases), MSRB1 (methionine sulfoxide reductase B1), and SEPHS2 (selenophosphate synthetase 2). Selenoproteins without known functions have traditionally been denoted by SEL or SEP symbols. However, these symbols are sometimes ambiguous and conflict with the approved nomenclature for several other genes. Therefore, there is a need to implement a rational and coherent nomenclature system for selenoprotein-encoding genes. Our solution is to use the root symbol SELENO followed by a letter. This nomenclature applies to SELENOF (selenoprotein F, the 15-kDa selenoprotein, SEP15), SELENOH (selenoprotein H, SELH, C11orf31), SELENOI (selenoprotein I, SELI, EPT1), SELENOK (selenoprotein K, SELK), SELENOM (selenoprotein M, SELM), SELENON (selenoprotein N, SEPN1, SELN), SELENOO (selenoprotein O, SELO), SELENOP (selenoprotein P, SeP, SEPP1, SELP), SELENOS (selenoprotein S, SELS, SEPS1, VIMP), SELENOT (selenoprotein T, SELT), SELENOV (selenoprotein V, SELV), and SELENOW (selenoprotein W, SELW, SEPW1). This system, approved by the HUGO Gene Nomenclature Committee, also resolves conflicting, missing, and ambiguous designations for selenoprotein genes and is applicable to selenoproteins across vertebrates.


Assuntos
Selenoproteínas/classificação , Selenoproteínas/genética , Humanos , Terminologia como Assunto
15.
Sci Rep ; 6: 32526, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27580796

RESUMO

Despite the possibility of combining Toll-like receptor (TLR) ligands as adjuvants to improve vaccine efficacy, it remains unclear which combinations of TLR ligands are effective or what their underlying mechanisms may be. Here, we investigated the mechanism of action of L-pampo, a proprietary adjuvant composed of TLR1/2 and TLR3 ligands. L-pampo dramatically increased humoral immune responses against the tested target antigens, which was correlated with an increase in follicular helper T cells and the maintenance of antigen-specific CD4(+) T cells. During the initial priming phase, in contrast to the induction of type I interferon (IFN) and pro-inflammatory cytokines stimulated by polyI:C, L-pampo showed a greatly diminished induction of type I IFN, but not of other cytokines, and remarkably attenuated IRF3 signaling, which appeared to be critical to L-pampo-mediated adjuvanticity. Collectively, our results demonstrate that the adjuvant L-pampo contributes to the promotion of antigen-specific antibodies and CD4(+) T cell responses via a fine regulation of the TLR1/2 and TLR3 signaling pathways, which may be helpful in the design of improved vaccines.


Assuntos
Adjuvantes Imunológicos/administração & dosagem , Imunidade Humoral/efeitos dos fármacos , Interferon Tipo I/imunologia , Linfócitos T Auxiliares-Indutores/imunologia , Receptor 1 Toll-Like/imunologia , Receptor 2 Toll-Like/imunologia , Receptor 3 Toll-Like/imunologia , Transferência Adotiva , Animais , Antígenos/administração & dosagem , Regulação da Expressão Gênica , Imunização , Interferon Tipo I/genética , Ligantes , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Ovalbumina/administração & dosagem , Poli I-C/administração & dosagem , Células RAW 264.7 , Linfócitos T Auxiliares-Indutores/citologia , Linfócitos T Auxiliares-Indutores/efeitos dos fármacos , Linfócitos T Auxiliares-Indutores/transplante , Receptor 1 Toll-Like/genética , Receptor 2 Toll-Like/genética , Receptor 3 Toll-Like/genética
16.
Biochem J ; 473(14): 2141-54, 2016 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-27208177

RESUMO

Selenophosphate synthetase (SPS) was initially detected in bacteria and was shown to synthesize selenophosphate, the active selenium donor. However, mammals have two SPS paralogues, which are designated SPS1 and SPS2. Although it is known that SPS2 catalyses the synthesis of selenophosphate, the function of SPS1 remains largely unclear. To examine the role of SPS1 in mammals, we generated a Sps1-knockout mouse and found that systemic SPS1 deficiency led to embryos that were clearly underdeveloped by embryonic day (E)8.5 and virtually resorbed by E14.5. The knockout of Sps1 in the liver preserved viability, but significantly affected the expression of a large number of mRNAs involved in cancer, embryonic development and the glutathione system. Particularly notable was the extreme deficiency of glutaredoxin 1 (GLRX1) and glutathione transferase Omega 1 (GSTO1). To assess these phenotypes at the cellular level, we targeted the removal of SPS1 in F9 cells, a mouse embryonal carcinoma (EC) cell line, which affected the glutathione system proteins and accordingly led to the accumulation of hydrogen peroxide in the cell. Furthermore, we found that several malignant characteristics of SPS1-deficient F9 cells were reversed, suggesting that SPS1 played a role in supporting and/or sustaining cancer. In addition, the overexpression of mouse or human GLRX1 led to a reversal of observed increases in reactive oxygen species (ROS) in the F9 SPS1/GLRX1-deficient cells and resulted in levels that were similar to those in F9 SPS1-sufficient cells. The results suggested that SPS1 is an essential mammalian enzyme with roles in regulating redox homoeostasis and controlling cell growth.


Assuntos
Fosfotransferases/metabolismo , Animais , Linhagem Celular , Glutarredoxinas/genética , Glutarredoxinas/metabolismo , Glutationa/metabolismo , Dissulfeto de Glutationa/metabolismo , Homeostase/genética , Homeostase/fisiologia , Humanos , Fígado/metabolismo , Camundongos , Camundongos Knockout , Oxirredução , Fosfotransferases/genética , Fosfato de Piridoxal/metabolismo
17.
J Toxicol Sci ; 41(3): 391-402, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27193731

RESUMO

Manganese (Mn) is used in industrial metal alloys and can be released into the atmosphere during methylcyclopentadienyl manganese tricarbonyl combustion. Increased Mn deposition in the brain after long-term exposure to the metal by inhalation is associated with altered dopamine metabolism and neurobehavioral problems, including impaired motor skills. However, neurotoxic effects of short-term exposure to inhaled Mn are not completely characterized. The purpose of this study is to define the neurobehavioral and neurochemical effects of short-term inhalation exposure to Mn at a high concentration using rats. Male Sprague-Dawley rats were exposed to MnCl2 aerosol in a nose-only inhalation chamber for 3 weeks (1.2 µm, 39 mg/m(3)). Motor coordination was tested on the day after the last exposure using a rotarod device at a fixed speed of 10 rpm for 2 min. Also, dopamine transporter and dopamine receptor protein expression levels in the striatum region of the brain were determined by Western blot analysis. At a rotarod speed of 10 rpm, there were no significant differences in the time on the bar before the first fall or the number of falls during the two-minute test observed in the exposed rats, as compared with controls. The Mn-exposed group had significantly higher Mn levels in the lung, blood, olfactory bulb, prefrontal cortex, striatum, and cerebellum compared with the control group. A Mn concentration gradient was observed from the olfactory bulb to the striatum, supporting the idea that Mn is transported via the olfactory pathway. Our results demonstrated that inhalation exposure to 39 mg/m(3) Mn for 3 weeks induced mild lung injury and modulation of dopamine transporter expression in the brain, without altering motor activity.


Assuntos
Comportamento Animal/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Cloretos/toxicidade , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Exposição por Inalação , Intoxicação por Manganês/etiologia , Atividade Motora/efeitos dos fármacos , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Encéfalo/fisiopatologia , Cloretos/metabolismo , Lesão Pulmonar/induzido quimicamente , Lesão Pulmonar/patologia , Masculino , Compostos de Manganês/metabolismo , Intoxicação por Manganês/metabolismo , Intoxicação por Manganês/fisiopatologia , Intoxicação por Manganês/psicologia , Ratos Sprague-Dawley , Receptores Dopaminérgicos/metabolismo , Medição de Risco , Teste de Desempenho do Rota-Rod , Fatores de Tempo , Regulação para Cima
18.
Cancers (Basel) ; 7(4): 2262-76, 2015 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-26569310

RESUMO

A common characteristic of many cancer cells is that they suffer from oxidative stress. They, therefore, require effective redox regulatory systems to combat the higher levels of reactive oxygen species that accompany accelerated growth compared to the normal cells of origin. An elevated dependence on these systems in cancers suggests that targeting these systems may provide an avenue for retarding the malignancy process. Herein, we examined the redox regulatory systems in human liver and lung cancers by comparing human lung adenocarcinoma and liver carcinoma to their respective surrounding normal tissues. Significant differences were found in the two major redox systems, the thioredoxin and glutathione systems. Thioredoxin reductase 1 levels were elevated in both malignancies, but thioredoxin was highly upregulated in lung tumor and only slightly upregulated in liver tumor, while peroxiredoxin 1 was highly elevated in lung tumor, but downregulated in liver tumor. There were also major differences within the glutathione system between the malignancies and their normal tissues. The data suggest a greater dependence of liver on either the thioredoxin or glutathione system to drive the malignancy, while lung cancer appeared to depend primarily on the thioredoxin system.

19.
Mol Cells ; 38(5): 457-65, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25728752

RESUMO

The 15-kDa selenoprotein (Sep15) is a selenoprotein residing in the lumen of the endoplasmic reticulum (ER) and implicated in quality control of protein folding. Herein, we established an inducible RNAi cell line that targets Sep15 mRNA in Chang liver cells. RNAi-induced Sep15 deficiency led to inhibition of cell proliferation, whereas cell growth was resumed after removal of the knockdown inducer. Sep15-deficient cells were arrested at the G1 phase by upregulating p21 and p27, and these cells were also characterized by ER stress. In addition, Sep15 deficiency led to the relocation of focal adhesions to the periphery of the cell basement and to the decrease of the migratory and invasive ability. All these changes were reversible depending on Sep15 status. Rescuing the knockdown state by expressing a silent mutant Sep15 mRNA that is resistant to siRNA also reversed the phenotypic changes. Our results suggest that SEP15 plays important roles in the regulation of the G1 phase during the cell cycle as well as in cell motility in Chang liver cells, and that this selenoprotein offers a novel functional link between the cell cycle and cell motility.


Assuntos
Linhagem Celular/fisiologia , Fase G1 , Selenoproteínas/deficiência , Movimento Celular , Proliferação de Células , Humanos , RNA Interferente Pequeno/metabolismo , Selenoproteínas/genética
20.
Biochem Biophys Res Commun ; 456(4): 884-90, 2015 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-25529450

RESUMO

The 15-kDa selenoprotein (Sep15) has been implicated in etiology of some types of cancer. Herein, inducible RNAi cell lines were established and cell morphology and motility were analyzed. The majority of Sep15-deficient cells (>95%) formed membrane blebs in a dynamic manner. Blebbing cells transformed cell morphology from a normal flat spindle shape to a spherical morphology. In blebbing cells, actin fibers moved to the cell periphery, covering and obscuring visualization of α-tubulin. Bleb formation was suppressed by the inhibitors of Rho-associated protein kinase (ROCK), RhoA or myosin light chain (MLC), restoring blebbing cells to wild-type morphology. RhoA activation and phosphorylation of myosin phosphatase target subunit 1 was induced by Sep15 knockdown. Sep15-deficient cells were non-apoptotic, and displayed a distinct relative localization of F-actin and α-tubulin from typical apoptotic blebbing cells. Our data suggest that Sep15 in Chang liver cells regulates the pathway that antagonizes RhoA/ROCK/MLC-dependent non-apoptotic bleb formation.


Assuntos
Apoptose , Estruturas da Membrana Celular/metabolismo , Citoesqueleto/metabolismo , Selenoproteínas/deficiência , Transdução de Sinais , Quinases Associadas a rho/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo , Amidas/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Estruturas da Membrana Celular/efeitos dos fármacos , Citoesqueleto/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Humanos , Quinase de Cadeia Leve de Miosina/antagonistas & inibidores , Piridinas/farmacologia , Selenoproteínas/metabolismo , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...