Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
mBio ; 15(4): e0332223, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38426789

RESUMO

Swarming is a macroscopic phenomenon in which surface bacteria organize into a motile population. The flagellar motor that drives swarming in Pseudomonas aeruginosa is powered by stators MotAB and MotCD. Deletion of the MotCD stator eliminates swarming, whereas deletion of the MotAB stator enhances swarming. Interestingly, we measured a strongly asymmetric stator availability in the wild-type (WT) strain, with MotAB stators produced at an approximately 40-fold higher level than MotCD stators. However, utilization of MotCD stators in free swimming cells requires higher liquid viscosities, while MotAB stators are readily utilized at low viscosities. Importantly, we find that cells with MotCD stators are ~10× more likely to have an active motor compared to cells uses the MotAB stators. The spectrum of motility intermittency can either cooperatively shut down or promote flagellum motility in WT populations. In P. aeruginosa, transition from a static solid-like biofilm to a dynamic liquid-like swarm is not achieved at a single critical value of flagellum torque or stator fraction but is collectively controlled by diverse combinations of flagellum activities and motor intermittencies via dynamic stator utilization. Experimental and computational results indicate that the initiation or arrest of flagellum-driven swarming motility does not occur from individual fitness or motility performance but rather related to concepts from the "jamming transition" in active granular matter.IMPORTANCEIt is now known that there exist multifactorial influences on swarming motility for P. aeruginosa, but it is not clear precisely why stator selection in the flagellum motor is so important. We show differential production and utilization of the stators. Moreover, we find the unanticipated result that the two motor configurations have significantly different motor intermittencies: the fraction of flagellum-active cells in a population on average with MotCD is active ~10× more often than with MotAB. What emerges from this complex landscape of stator utilization and resultant motor output is an intrinsically heterogeneous population of motile cells. We show how consequences of stator recruitment led to swarming motility and how the stators potentially relate to surface sensing circuitry.


Assuntos
Proteínas de Bactérias , Pseudomonas aeruginosa , Pseudomonas aeruginosa/genética , Biofilmes , Movimento , Flagelos/genética
2.
Immunity ; 56(6): 1187-1203.e12, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37160118

RESUMO

B7 ligands (CD80 and CD86), expressed by professional antigen-presenting cells (APCs), activate the main co-stimulatory receptor CD28 on T cells in trans. However, in peripheral tissues, APCs expressing B7 ligands are relatively scarce. This raises the questions of whether and how CD28 co-stimulation occurs in peripheral tissues. Here, we report that CD8+ T cells displayed B7 ligands that interacted with CD28 in cis at membrane invaginations of the immunological synapse as a result of membrane remodeling driven by phosphoinositide-3-kinase (PI3K) and sorting-nexin-9 (SNX9). cis-B7:CD28 interactions triggered CD28 signaling through protein kinase C theta (PKCθ) and promoted CD8+ T cell survival, migration, and cytokine production. In mouse tumor models, loss of T cell-intrinsic cis-B7:CD28 interactions decreased intratumoral T cells and accelerated tumor growth. Thus, B7 ligands on CD8+ T cells can evoke cell-autonomous CD28 co-stimulation in cis in peripheral tissues, suggesting cis-signaling as a general mechanism for boosting T cell functionality.


Assuntos
Antígenos CD28 , Linfócitos T CD8-Positivos , Camundongos , Animais , Antígenos CD28/metabolismo , Antígenos CD/metabolismo , Ligantes , Membranas Sinápticas/metabolismo , Antígeno B7-2 , Glicoproteínas de Membrana/metabolismo , Antígeno B7-1/metabolismo , Moléculas de Adesão Celular , Ativação Linfocitária
3.
J Immunother Cancer ; 11(5)2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37188395

RESUMO

BACKGROUND: Discovery that ~16% of T cells naturally co-express two T-cell receptor (TCR) clonotypes prompts examining the role of dual TCR cells in immune functions. METHODS: Using TCRα-reporter transgenic mice, enabling unambiguous identification of single-TCR and dual-TCR cells, we tested the role of dual TCR cells in antitumor immune responses against immune-responsive syngeneic 6727 sarcoma and immune-resistant B16F10 melanoma. RESULTS: Dual TCR cells were specifically increased among tumor-infiltrating lymphocytes (TILs) in both models, indicating selective advantage in antitumor responses. Phenotype and single-cell gene expression analyses identified dual TCR are predominant during the effective antitumor response, demonstrating selectively increased activation in the TIL compartment and skewing toward an effector memory phenotype. Absence of dual TCR cells impaired immune response to B16F10 but not 6727, suggesting that dual TCR cells may be more influential in responses against poorly immunogenic tumors. Dual TCR cells demonstrated an advantage in recognition of B16F10-derived neoantigens in vitro, providing a mechanistic basis for their antitumor reactivity. CONCLUSIONS: These results discover an unrecognized role for dual TCR cells in protective immune function and identify these cells and their TCRs as a potential resource for antitumor immunotherapy.


Assuntos
Melanoma , Linfócitos T , Camundongos , Animais , Antígenos de Neoplasias , Receptores de Antígenos de Linfócitos T , Imunidade
4.
bioRxiv ; 2023 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-37090636

RESUMO

Swarming is a macroscopic phenomenon in which surface bacteria organize into a motile population. The flagellar motor that drives swarming in Pseudomonas aeruginosa is powered by stators MotAB and MotCD. Deletion of the MotCD stator eliminates swarming, whereas deletion of the MotAB stator enhances swarming. Interestingly, we measured a strongly asymmetric stator availability in the WT strain, with MotAB stators produced ∼40-fold more than MotCD stators. However, recruitment of MotCD stators in free swimming cells requires higher liquid viscosities, while MotAB stators are readily recruited at low viscosities. Importantly, we find that cells with MotCD stators are ∼10x more likely to have an active motor compared to cells without, so wild-type, WT, populations are intrinsically heterogeneous and not reducible to MotAB-dominant or MotCD-dominant behavior. The spectrum of motility intermittency can either cooperatively shut down or promote flagellum motility in WT populations. In P. aeruginosa , transition from a static solid-like biofilm to a dynamic liquid-like swarm is not achieved at a single critical value of flagellum torque or stator fraction but is collectively controlled by diverse combinations of flagellum activities and motor intermittencies via dynamic stator recruitment. Experimental and computational results indicate that the initiation or arrest of flagellum-driven swarming motility does not occur from individual fitness or motility performance but rather related to concepts from the 'jamming transition' in active granular matter. Importance: After extensive study, it is now known that there exist multifactorial influences on swarming motility in P. aeruginosa , but it is not clear precisely why stator selection in the flagellum motor is so important or how this process is collectively initiated or arrested. Here, we show that for P. aeruginosa PA14, MotAB stators are produced ∼40-fold more than MotCD stators, but recruitment of MotCD over MotAB stators requires higher liquid viscosities. Moreover, we find the unanticipated result that the two motor configurations have significantly different motor intermittencies, the fraction of flagellum-active cells in a population on average, with MotCD active ∼10x more often than MotAB. What emerges from this complex landscape of stator recruitment and resultant motor output is an intrinsically heterogeneous population of motile cells. We show how consequences of stator recruitment led to swarming motility, and how they potentially relate to surface sensing circuitry.

5.
New Phytol ; 238(3): 1004-1018, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36495263

RESUMO

To what degree plant ecosystems thermoregulate their canopy temperature (Tc ) is critical to assess ecosystems' metabolisms and resilience with climate change, but remains controversial, with opinions from no to moderate thermoregulation capability. With global datasets of Tc , air temperature (Ta ), and other environmental and biotic variables from FLUXNET and satellites, we tested the 'limited homeothermy' hypothesis (indicated by Tc & Ta regression slope < 1 or Tc < Ta around midday) across global extratropics, including temporal and spatial dimensions. Across daily to weekly and monthly timescales, over 80% of sites/ecosystems have slopes ≥1 or Tc > Ta around midday, rejecting the above hypothesis. For those sites unsupporting the hypothesis, their Tc -Ta difference (ΔT) exhibits considerable seasonality that shows negative, partial correlations with leaf area index, implying a certain degree of thermoregulation capability. Spatially, site-mean ΔT exhibits larger variations than the slope indicator, suggesting ΔT is a more sensitive indicator for detecting thermoregulatory differences across biomes. Furthermore, this large spatial-wide ΔT variation (0-6°C) is primarily explained by environmental variables (38%) and secondarily by biotic factors (15%). These results demonstrate diverse thermoregulation patterns across global extratropics, with most ecosystems negating the 'limited homeothermy' hypothesis, but their thermoregulation still occurs, implying that slope < 1 or Tc < Ta are not necessary conditions for plant thermoregulation.


Assuntos
Ecossistema , Plantas , Regulação da Temperatura Corporal , Temperatura , Mudança Climática
6.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35064082

RESUMO

Work on surface sensing in bacterial biofilms has focused on how cells transduce sensory input into cyclic diguanylate (c-di-GMP) signaling, low and high levels of which generally correlate with high-motility planktonic cells and low-motility biofilm cells, respectively. Using Granger causal inference methods, however, we find that single-cell c-di-GMP increases are not sufficient to imply surface commitment. Tracking entire lineages of cells from the progenitor cell onward reveals that c-di-GMP levels can exhibit increases but also undergo oscillations that can propagate across 10 to 20 generations, thereby encoding more complex instructions for community behavior. Principal component and factor analysis of lineage c-di-GMP data shows that surface commitment behavior correlates with three statistically independent composite features, which roughly correspond to mean c-di-GMP levels, c-di-GMP oscillation period, and surface motility. Surface commitment in young biofilms does not correlate to c-di-GMP increases alone but also to the emergence of high-frequency and small-amplitude modulation of elevated c-di-GMP signal along a lineage of cells. Using this framework, we dissect how increasing or decreasing signal transduction from wild-type levels, by varying the interaction strength between PilO, a component of a principal surface sensing appendage system, and SadC, a key hub diguanylate cyclase that synthesizes c-di-GMP, impacts frequency and amplitude modulation of c-di-GMP signals and cooperative surface commitment.


Assuntos
Fenômenos Fisiológicos Bacterianos , GMP Cíclico/análogos & derivados , Transdução de Sinais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , GMP Cíclico/metabolismo , Mutação , Ligação Proteica , Pseudomonas aeruginosa/fisiologia
7.
Nat Biomed Eng ; 6(7): 882-897, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-34931077

RESUMO

Targeting the delivery of therapeutics specifically to diseased tissue enhances their efficacy and decreases their side effects. Here we show that mesenchymal stromal cells with their nuclei removed by density-gradient centrifugation following the genetic modification of the cells for their display of chemoattractant receptors and endothelial-cell-binding molecules are effective vehicles for the targeted delivery of therapeutics. The enucleated cells neither proliferate nor permanently engraft in the host, yet retain the organelles for energy and protein production, undergo integrin-regulated adhesion to inflamed endothelial cells, and actively home to chemokine gradients established by diseased tissues. In mouse models of acute inflammation and of pancreatitis, systemically administered enucleated cells expressing two types of chemokine receptor and an endothelial adhesion molecule enhanced the delivery of an anti-inflammatory cytokine to diseased tissue (with respect to unmodified stromal cells and to exosomes derived from bone-marrow-derived stromal cells), attenuating inflammation and ameliorating disease pathology. Enucleated cells retain most of the cells' functionality, yet acquire the cargo-carrying characteristics of cell-free delivery systems, and hence represent a versatile delivery vehicle and therapeutic system.


Assuntos
Sistemas de Liberação de Medicamentos , Células-Tronco Mesenquimais , Animais , Quimiocinas/metabolismo , Citocinas/metabolismo , Células Endoteliais/metabolismo , Humanos , Inflamação/metabolismo , Camundongos
8.
Science ; 373(6561): 1336-1340, 2021 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-34529487

RESUMO

Microbial fuel cells (MFCs) can directly convert the chemical energy stored in organic matter to electricity and are of considerable interest for power generation and wastewater treatment. However, the current MFCs typically exhibit unsatisfactorily low power densities that are largely limited by the sluggish transmembrane and extracellular electron-transfer processes. Here, we report a rational strategy to boost the charge-extraction efficiency in Shewanella MFCs substantially by introducing transmembrane and outer-membrane silver nanoparticles. The resulting Shewanella-silver MFCs deliver a maximum current density of 3.85 milliamperes per square centimeter, power density of 0.66 milliwatts per square centimeter, and single-cell turnover frequency of 8.6 × 105 per second, which are all considerably higher than those of the best MFCs reported to date. Additionally, the hybrid MFCs feature an excellent fuel-utilization efficiency, with a coulombic efficiency of 81%.


Assuntos
Fontes de Energia Bioelétrica , Nanopartículas Metálicas , Shewanella/metabolismo , Prata , Biofilmes , Espectroscopia Dielétrica , Impedância Elétrica , Eletricidade , Eletrodos , Elétrons , Grafite , Shewanella/ultraestrutura
9.
Proc Natl Acad Sci U S A ; 118(26)2021 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-34168081

RESUMO

To initiate biofilm formation, it is critical for bacteria to sense a surface and respond precisely to activate downstream components of the biofilm program. Type 4 pili (T4P) and increasing levels of c-di-GMP have been shown to be important for surface sensing and biofilm formation, respectively; however, mechanisms important in modulating the levels of this dinucleotide molecule to define a precise output response are unknown. Here, using macroscopic bulk assays and single-cell tracking analyses of Pseudomonas aeruginosa, we uncover a role of the T4P alignment complex protein, PilO, in modulating the activity of the diguanylate cyclase (DGC) SadC. Two-hybrid and bimolecular fluorescence complementation assays, combined with genetic studies, are consistent with a model whereby PilO interacts with SadC and that the PilO-SadC interaction inhibits SadC's activity, resulting in decreased biofilm formation and increased motility. Using single-cell tracking, we monitor both the mean c-di-GMP and the variance of this dinucleotide in individual cells. Mutations that increase PilO-SadC interaction modestly, but significantly, decrease both the average and variance in c-di-GMP levels on a cell-by-cell basis, while mutants that disrupt PilO-SadC interaction increase the mean and variance of c-di-GMP levels. This work is consistent with a model wherein P. aeruginosa uses a component of the T4P scaffold to fine-tune the levels of this dinucleotide signal during surface commitment. Finally, given our previous findings linking SadC to the flagellar machinery, we propose that this DGC acts as a bridge to integrate T4P and flagellar-derived input signals during initial surface engagement.


Assuntos
Biofilmes/crescimento & desenvolvimento , GMP Cíclico/análogos & derivados , Proteínas de Escherichia coli/metabolismo , Fímbrias Bacterianas/metabolismo , Fósforo-Oxigênio Liases/metabolismo , Pseudomonas aeruginosa/enzimologia , Pseudomonas aeruginosa/fisiologia , Motivos de Aminoácidos , Sequência Conservada , GMP Cíclico/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Modelos Biológicos , Mutação/genética , Fósforo-Oxigênio Liases/química , Fósforo-Oxigênio Liases/genética , Ligação Proteica , Domínios Proteicos , Transdução de Sinais , Análise de Célula Única , Sistemas de Secreção Tipo IV
10.
Phys Biol ; 18(5)2021 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-33462162

RESUMO

Bacterial biofilms are communities of bacteria that exist as aggregates that can adhere to surfaces or be free-standing. This complex, social mode of cellular organization is fundamental to the physiology of microbes and often exhibits surprising behavior. Bacterial biofilms are more than the sum of their parts: single-cell behavior has a complex relation to collective community behavior, in a manner perhaps cognate to the complex relation between atomic physics and condensed matter physics. Biofilm microbiology is a relatively young field by biology standards, but it has already attracted intense attention from physicists. Sometimes, this attention takes the form of seeing biofilms as inspiration for new physics. In this roadmap, we highlight the work of those who have taken the opposite strategy: we highlight the work of physicists and physical scientists who use physics to engage fundamental concepts in bacterial biofilm microbiology, including adhesion, sensing, motility, signaling, memory, energy flow, community formation and cooperativity. These contributions are juxtaposed with microbiologists who have made recent important discoveries on bacterial biofilms using state-of-the-art physical methods. The contributions to this roadmap exemplify how well physics and biology can be combined to achieve a new synthesis, rather than just a division of labor.


Assuntos
Aderência Bacteriana/fisiologia , Fenômenos Fisiológicos Bacterianos , Biofilmes , Percepção de Quorum/fisiologia , Biofilmes/crescimento & desenvolvimento
11.
mBio ; 13(1): e0375421, 2021 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35100866

RESUMO

During biofilm formation, the opportunistic pathogen Pseudomonas aeruginosa uses its type IV pili (TFP) to sense a surface, eliciting increased second-messenger production and regulating target pathways required to adapt to a surface lifestyle. The mechanisms whereby TFP detect surface contact are still poorly understood, although mechanosensing is often invoked, with few data supporting this claim. Using a combination of molecular genetics and single-cell analysis, with biophysical, biochemical, and genomics techniques, we show that force-induced changes mediated by the von Willebrand A (vWA) domain-containing, TFP tip-associated protein PilY1 are required for surface sensing. Atomic force microscopy shows that TFP/PilY1 can undergo force-induced, sustained conformational changes akin to those observed for mechanosensitive proteins like titin. We show that mutation of a single cysteine residue in the vWA domain of PilY1 results in modestly lower surface adhesion forces, reduced sustained conformational changes, and increased nanospring-like properties, as well as reduced c-di-GMP signaling and biofilm formation. Mutating this cysteine has allowed us to genetically separate a role for TFP in twitching motility from surface-sensing signaling. The conservation of this Cys residue in all P. aeruginosa PA14 strains and its absence in the ∼720 sequenced strains of P. aeruginosa PAO1 may contribute to explaining the observed differences in surface colonization strategies observed for PA14 versus PAO1. IMPORTANCE Most bacteria live on abiotic and biotic surfaces in surface-attached communities known as biofilms. Surface sensing and increased levels of the second-messenger molecule c-di-GMP are crucial to the transition from planktonic to biofilm growth. The mechanism(s) underlying TFP-mediated surface detection that triggers this c-di-GMP signaling cascade is unclear. Here, we provide key insight into this question; we show that the eukaryote-like vWA domain of the TFP tip-associated protein PilY1 responds to mechanical force, which in turn drives the production of a key second messenger needed to regulate surface behaviors. Our studies highlight a potential mechanism that may account for differing surface colonization strategies.


Assuntos
Proteínas de Bactérias , Biofilmes , Cisteína , Pseudomonas aeruginosa , Proteínas de Bactérias/metabolismo , GMP Cíclico/metabolismo , Cisteína/metabolismo , Proteínas de Fímbrias/genética , Fímbrias Bacterianas/genética , Regulação Bacteriana da Expressão Gênica , Pseudomonas aeruginosa/genética , Sistemas do Segundo Mensageiro
12.
Conserv Biol ; 35(1): 325-335, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32323369

RESUMO

Quantifying trends in ecosystem extent is essential to understanding the status of ecosystems. Estimates of ecosystem loss are widely used to track progress toward conservation targets, monitor deforestation, and identify ecosystems undergoing rapid change. Satellite remote sensing has become an important source of information for estimating these variables. Despite regular acquisition of satellite data, many studies of change in ecosystem extent use only static snapshots, which ignores considerable amounts of data. This approach limits the ability to explicitly estimate trend uncertainty and significance. Assessing the accuracy of multiple snapshots also requires time-series reference data which is often very costly and sometimes impossible to obtain. We devised a method of estimating trends in ecosystem extent that uses all available Landsat satellite imagery. We used a dense time series of classified maps that explicitly accounted for covariates that affect extent estimates (e.g., time, cloud cover, and seasonality). We applied this approach to the Hukaung Valley Wildlife Sanctuary, Myanmar, where rapid deforestation is greatly affecting the lowland rainforest. We applied a generalized additive mixed model to estimate forest extent from more than 650 Landsat image classifications (1999-2018). Forest extent declined significantly at a rate of 0.274%/year (SE = 0.078). Forest extent declined from 91.70% (SE = 0.02) of the study area in 1999 to 86.52% (SE = 0.02) in 2018. Compared with the snapshot method, our approach improved estimated trends of ecosystem loss by allowing significance testing with confidence intervals and incorporation of nonlinear relationships. Our method can be used to identify significant trends over time, reduces the need for extensive reference data through time, and provides quantitative estimates of uncertainty.


Estimación de los Cambios y Tendencias en la Extensión de los Ecosistemas Mediante Teledetección Satelital de Series Temporales Densas Resumen Las tendencias de cuantificación de la extensión de los ecosistemas es esencial para el entendimiento de su estado. Las estimaciones de pérdidas de los ecosistemas se usan con amplitud para rastrear el progreso hacia los objetivos de conservación, monitorear la deforestación e identificar a los ecosistemas que están experimentando un cambio rápido. La teledetección satelital se ha transformado en una fuente importante de información para la estimación de estas variables. A pesar de la obtención de datos satelitales, muchos estudios sobre el cambio en la extensión de los ecosistemas usan solamente capturas estáticas, lo cual ignora cantidades considerables de datos. Esta estrategia limita la habilidad que se tiene para estimar explícitamente la incertidumbre e importancia de la tendencia. La valoración de la precisión de múltiples capturas también requiere datos de referencia de series temporales, lo cual es muy costoso e imposible de conseguir en algunos casos. Diseñamos un método para estimar las tendencias en la extensión de los ecosistemas que usa todas las imágenes satelitales disponibles en Landsat. Usamos una serie temporal densa de los mapas clasificados que considera explícitamente a las covarianzas que afectan a las estimaciones de la extensión (p.ej.: tiempo, cobertura de nubes y estacionalidad). Aplicamos esta estrategia en el Santuario de Vida Silvestre del Valle de Huakaung en Myanmar, en donde la deforestación acelerada está afectando enormemente a la selva de tierras bajas. Aplicamos también un modelo mixto, aditivo y generalizado para estimar la extensión del bosque a partir de más de 650 clasificaciones de imágenes en Landsat (1999 - 2018). La extensión del bosque declinó significativamente a una tasa de 0.274%/año (SE 0.078). La extensión del bosque declinó del 91.70% (SE 0.02) del área de estudio en 1999 a 86.52% (SE 0.02) en 2018. Si la comparamos con la estrategia de las capturas, nuestra estrategia mejoró las tendencias estimadas de la pérdida del ecosistema al permitir la evaluación de significancia con intervalos de confianza y la incorporación de relaciones no lineales. Nuestro método puede usarse para identificar las tendencias significativas a lo largo del tiempo; también reduce la necesidad de tener datos de referencia extensos a lo largo del tiempo y proporciona estimaciones cuantitativas de la incertidumbre.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Monitoramento Ambiental , Florestas , Mianmar , Tecnologia de Sensoriamento Remoto
14.
ACS Appl Mater Interfaces ; 12(32): 35767-35781, 2020 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-32672931

RESUMO

Using glycopolymer surfaces, we have stimulated Shewanella oneidensis bacterial colonization and induced where the bacteria attach on a molecular pattern. When adherent bacteria were rinsed with methyl α-d-mannopyranoside, the glycopolymer-functionalized surfaces retained more cells than self-assembled monolayers terminated by a single mannose unit. These results suggest that the three-dimensional multivalency of the glycopolymers both promotes and retains bacterial attachment. When the methyl α-d-mannopyranoside competitor was codeposited with the cell culture, however, the mannose-based polymer was not significantly different from bare gold surfaces. The necessity for equilibration between methyl α-d-mannopyranoside and the cell culture to remove the enhancement suggests that the retention of cells on glycopolymer surfaces is kinetically controlled and is not a thermodynamic result of the cluster glycoside effect. The MshA lectin appears to facilitate the improved adhesion observed. Our findings that the surfaces studied here can induce stable initial attachment and influence the ratio of bacterial strains on the surface may be applied to harness useful microbial communities.


Assuntos
Materiais Revestidos Biocompatíveis/química , Manose/química , Polímeros/química , Shewanella/metabolismo , Resinas Acrílicas/química , Biofilmes , Adesão Celular , Células Cultivadas , Galactanos/química , Glicosilação , Ouro/química , Cinética , Lectinas/química , Mananas/química , Polimerização , Propriedades de Superfície , Termodinâmica
16.
Nat Commun ; 11(1): 1549, 2020 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-32214098

RESUMO

Biofilm formation by Vibrio cholerae facilitates environmental persistence, and hyperinfectivity within the host. Biofilm formation is regulated by 3',5'-cyclic diguanylate (c-di-GMP) and requires production of the type IV mannose-sensitive hemagglutinin (MSHA) pilus. Here, we show that the MSHA pilus is a dynamic extendable and retractable system, and its activity is directly controlled by c-di-GMP. The interaction between c-di-GMP and the ATPase MshE promotes pilus extension, whereas low levels of c-di-GMP correlate with enhanced retraction. Loss of retraction facilitated by the ATPase PilT increases near-surface roaming motility, and impairs initial surface attachment. However, prolonged retraction upon surface attachment results in reduced MSHA-mediated surface anchoring and increased levels of detachment. Our results indicate that c-di-GMP directly controls MshE activity, thus regulating MSHA pilus extension and retraction dynamics, and modulating V. cholerae surface attachment and colonization.


Assuntos
GMP Cíclico/análogos & derivados , Fímbrias Bacterianas/metabolismo , Vibrio cholerae/fisiologia , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Aderência Bacteriana , Biofilmes/crescimento & desenvolvimento , Rastreamento de Células , GMP Cíclico/metabolismo , Proteínas de Fímbrias/genética , Proteínas de Fímbrias/metabolismo , Fímbrias Bacterianas/genética , Movimento , Vibrio cholerae/citologia , Vibrio cholerae/metabolismo
17.
PLoS Genet ; 16(3): e1008703, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32176702

RESUMO

The assembly status of the V. cholerae flagellum regulates biofilm formation, suggesting that the bacterium senses a lack of movement to commit to a sessile lifestyle. Motility and biofilm formation are inversely regulated by the second messenger molecule cyclic dimeric guanosine monophosphate (c-di-GMP). Therefore, we sought to define the flagellum-associated c-di-GMP-mediated signaling pathways that regulate the transition from a motile to a sessile state. Here we report that elimination of the flagellum, via loss of the FlaA flagellin, results in a flagellum-dependent biofilm regulatory (FDBR) response, which elevates cellular c-di-GMP levels, increases biofilm gene expression, and enhances biofilm formation. The strength of the FDBR response is linked with status of the flagellar stator: it can be reversed by deletion of the T ring component MotX, and reduced by mutations altering either the Na+ binding ability of the stator or the Na+ motive force. Absence of the stator also results in reduction of mannose-sensitive hemagglutinin (MSHA) pilus levels on the cell surface, suggesting interconnectivity of signal transduction pathways involved in biofilm formation. Strains lacking flagellar rotor components similarly launched an FDBR response, however this was independent of the status of assembly of the flagellar stator. We found that the FDBR response requires at least three specific diguanylate cyclases that contribute to increased c-di-GMP levels, and propose that activation of biofilm formation during this response relies on c-di-GMP-dependent activation of positive regulators of biofilm production. Together our results dissect how flagellum assembly activates c-di-GMP signaling circuits, and how V. cholerae utilizes these signals to transition from a motile to a sessile state.


Assuntos
Biofilmes/crescimento & desenvolvimento , GMP Cíclico/análogos & derivados , Flagelos/metabolismo , Proteínas de Bactérias/genética , GMP Cíclico/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Fímbrias Bacterianas/metabolismo , Flagelos/fisiologia , Regulação Bacteriana da Expressão Gênica/genética , Fósforo-Oxigênio Liases/genética , Fósforo-Oxigênio Liases/metabolismo , Sistemas do Segundo Mensageiro/fisiologia , Transdução de Sinais/fisiologia , Vibrio cholerae/genética , Vibrio cholerae/metabolismo
18.
mBio ; 11(1)2020 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-32098815

RESUMO

What are bacteria doing during "reversible attachment," the period of transient surface attachment when they initially engage a surface, besides attaching themselves to the surface? Can an attaching cell help any other cell attach? If so, does it help all cells or employ a more selective strategy to help either nearby cells (spatial neighbors) or its progeny (temporal neighbors)? Using community tracking methods at the single-cell resolution, we suggest answers to these questions based on how reversible attachment progresses during surface sensing for Pseudomonas aeruginosa strains PAO1 and PA14. Although PAO1 and PA14 exhibit similar trends of surface cell population increase, they show unanticipated differences when cells are considered at the lineage level and interpreted using the quantitative framework of an exactly solvable stochastic model. Reversible attachment comprises two regimes of behavior, processive and nonprocessive, corresponding to whether cells of the lineage stay on the surface long enough to divide, or not, before detaching. Stark differences between PAO1 and PA14 in the processive regime of reversible attachment suggest the existence of two surface colonization strategies. PAO1 lineages commit quickly to a surface compared to PA14 lineages, with early c-di-GMP-mediated exopolysaccharide (EPS) production that can facilitate the attachment of neighbors. PA14 lineages modulate their motility via cyclic AMP (cAMP) and retain memory of the surface so that their progeny are primed for improved subsequent surface attachment. Based on the findings of previous studies, we propose that the differences between PAO1 and PA14 are potentially rooted in downstream differences between Wsp-based and Pil-Chp-based surface-sensing systems, respectively.IMPORTANCE The initial pivotal phase of bacterial biofilm formation known as reversible attachment, where cells undergo a period of transient surface attachment, is at once universal and poorly understood. What is more, although we know that reversible attachment culminates ultimately in irreversible attachment, it is not clear how reversible attachment progresses phenotypically, as bacterial surface-sensing circuits fundamentally alter cellular behavior. We analyze diverse observed bacterial behavior one family at a time (defined as a full lineage of cells related to one another by division) using a unifying stochastic model and show that our findings lead to insights on the time evolution of reversible attachment and the social cooperative dimension of surface attachment in PAO1 and PA14 strains.


Assuntos
Bactérias/metabolismo , Biofilmes/crescimento & desenvolvimento , Pseudomonas aeruginosa/fisiologia , Aderência Bacteriana , Fenômenos Fisiológicos Bacterianos , Proteínas de Bactérias , AMP Cíclico/metabolismo , Modelos Teóricos
19.
Immunity ; 51(6): 1059-1073.e9, 2019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-31757674

RESUMO

Combined immunotherapy targeting the immune checkpoint receptors cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) and programmed cell death 1 (PD-1), or CTLA-4 and the PD-1 ligand (PD-L1) exhibits superior anti-tumor responses compared with single-agent therapy. Here, we examined the molecular basis for this synergy. Using reconstitution assays with fluorescence readouts, we found that PD-L1 and the CTLA-4 ligand CD80 heterodimerize in cis but not trans. Quantitative biochemistry and cell biology assays revealed that PD-L1:CD80 cis-heterodimerization inhibited both PD-L1:PD-1 and CD80:CTLA-4 interactions through distinct mechanisms but preserved the ability of CD80 to activate the T cell co-stimulatory receptor CD28. Furthermore, PD-L1 expression on antigen-presenting cells (APCs) prevented CTLA-4-mediated trans-endocytosis of CD80. Atezolizumab (anti-PD-L1), but not anti-PD-1, reduced cell surface expression of CD80 on APCs, and this effect was negated by co-blockade of CTLA-4 with ipilimumab (anti-CTLA-4). Thus, PD-L1 exerts an immunostimulatory effect by repressing the CTLA-4 axis; this has implications to the synergy of anti-PD-L1 and anti-CTLA-4 combination therapy.


Assuntos
Antígeno B7-1/metabolismo , Antígeno B7-H1/metabolismo , Antígenos CD28/metabolismo , Antígeno CTLA-4/antagonistas & inibidores , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Animais , Anticorpos Monoclonais Humanizados/farmacologia , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Feminino , Células HEK293 , Humanos , Imunoterapia/métodos , Ipilimumab/farmacologia , Células Jurkat , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos BALB C , Neoplasias/imunologia , Neoplasias/terapia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/imunologia
20.
Elife ; 82019 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-31180327

RESUMO

The second messenger signaling molecule cyclic diguanylate monophosphate (c-di-GMP) drives the transition between planktonic and biofilm growth in many bacterial species. Pseudomonas aeruginosa has two surface sensing systems that produce c-di-GMP in response to surface adherence. Current thinking in the field is that once cells attach to a surface, they uniformly respond by producing c-di-GMP. Here, we describe how the Wsp system generates heterogeneity in surface sensing, resulting in two physiologically distinct subpopulations of cells. One subpopulation has elevated c-di-GMP and produces biofilm matrix, serving as the founders of initial microcolonies. The other subpopulation has low c-di-GMP and engages in surface motility, allowing for exploration of the surface. We also show that this heterogeneity strongly correlates to surface behavior for descendent cells. Together, our results suggest that after surface attachment, P. aeruginosa engages in a division of labor that persists across generations, accelerating early biofilm formation and surface exploration.


Bacteria can adopt different lifestyles, depending on the environment in which they grow. They can exist as single cells that are free to explore their environment or group together to form 'biofilms'. The bacteria in biofilms stick to a surface, and produce a slimy 'matrix' that covers and thereby protects them. Biofilms have been found in lung infections that affect people with the genetic disorder cystic fibrosis, and can also form on the surface of medical implants. Because the biofilm lifestyle protects bacteria from the immune system and antimicrobial drugs, learning about how biofilms form could help researchers to discover ways to prevent and treat such infections. Many bacteria switch between the free-living and biofilm lifestyles by altering their levels of a signaling molecule called cyclic diguanylate monophosphate (called c-di-GMP for short). Bacteria living in biofilms have much higher levels of c-di-GMP than their free-living counterparts, and bacteria that have high levels of c-di-GMP produce more biofilm matrix. Bacteria called Pseudomonas aeruginosa use a protein signaling complex called the Wsp system to sense that they are on a surface and increase c-di-GMP production. Questions remained about how quickly this change in production occurs, and whether bacteria pass on their c-di-GMP levels to the new descendant cells when they divide. Armbruster et al. monitored individual cells of P. aeruginosa producing c-di-GMP as they began to form biofilms. Unexpectedly, not all cells increased their c-di-GMP levels when they first attached to a surface. Instead, Armbruster et al. found that there are two populations ­ high and low c-di-GMP cells ­ that each perform complementary and important tasks in the early stages of biofilm formation. The high c-di-GMP cells represent 'biofilm founders' that start to produce the biofilm matrix, whereas the low c-di-GMP cells represent 'surface explorers' that spend more time traveling along the surface. Armbruster et al. found that the Wsp surface sensing system generates these two populations of cells. Moreover, the c-di-GMP levels in a bacterial cell even affect the behavior of the descendant cells that form when it divides. This effect can persist for several cell generations. More work is needed to examine exactly how the biofilm founders and surface explorers interact and influence how biofilms form, and to discover if blocking c-di-GMP signaling prevents biofilm formation. This could ultimately lead to new strategies to prevent and treat infections in humans.


Assuntos
Proteínas de Bactérias/metabolismo , Membrana Celular/metabolismo , GMP Cíclico/análogos & derivados , Pseudomonas aeruginosa/metabolismo , Aderência Bacteriana/genética , Aderência Bacteriana/fisiologia , Proteínas de Bactérias/genética , Biofilmes/crescimento & desenvolvimento , GMP Cíclico/metabolismo , Regulação Bacteriana da Expressão Gênica , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/fisiologia , Percepção de Quorum/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...