Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Light Sci Appl ; 11(1): 24, 2022 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-35075116

RESUMO

Implantable image sensors have the potential to revolutionize neuroscience. Due to their small form factor requirements; however, conventional filters and optics cannot be implemented. These limitations obstruct high-resolution imaging of large neural densities. Recent advances in angle-sensitive image sensors and single-photon avalanche diodes have provided a path toward ultrathin lens-less fluorescence imaging, enabling plenoptic sensing by extending sensing capabilities to include photon arrival time and incident angle, thereby providing the opportunity for separability of fluorescence point sources within the context of light-field microscopy (LFM). However, the addition of spectral sensitivity to angle-sensitive LFM reduces imager resolution because each wavelength requires a separate pixel subset. Here, we present a 1024-pixel, 50 µm thick implantable shank-based neural imager with color-filter-grating-based angle-sensitive pixels. This angular-spectral sensitive front end combines a metal-insulator-metal (MIM) Fabry-Perot color filter and diffractive optics to produce the measurement of orthogonal light-field information from two distinct colors within a single photodetector. The result is the ability to add independent color sensing to LFM while doubling the effective pixel density. The implantable imager combines angular-spectral and temporal information to demix and localize multispectral fluorescent targets. In this initial prototype, this is demonstrated with 45 µm diameter fluorescently labeled beads in scattering medium. Fluorescent lifetime imaging is exploited to further aid source separation, in addition to detecting pH through lifetime changes in fluorescent dyes. While these initial fluorescent targets are considerably brighter than fluorescently labeled neurons, further improvements will allow the application of these techniques to in-vivo multifluorescent structural and functional neural imaging.

2.
Adv Sci (Weinh) ; 9(2): e2103564, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34796701

RESUMO

Cell-type-specific, activity-dependent electrophysiology can allow in-depth analysis of functional connectivity inside complex neural circuits composed of various cell types. To date, optics-based fluorescence recording devices enable monitoring cell-type-specific activities. However, the monitoring is typically limited to a single brain region, and the temporal resolution is significantly low. Herein, a multimodal multi-shank fluorescence neural probe that allows cell-type-specific electrophysiology from multiple deep-brain regions at a high spatiotemporal resolution is presented. A photodiode and an electrode-array pair are monolithically integrated on each tip of a minimal-form-factor silicon device. Both fluorescence and electrical signals are successfully measured simultaneously in GCaMP6f expressing mice, and the cell type from sorted neural spikes is identified. The probe's capability of combined electro-optical recordings for cell-type-specific electrophysiology at multiple brain regions within a neural circuit is demonstrated. The new experimental paradigm to enable the precise investigation of functional connectivity inside and across complex neural circuits composed of various cell types is expected.


Assuntos
Encéfalo/fisiologia , Fenômenos Eletrofisiológicos/fisiologia , Eletrofisiologia/instrumentação , Eletrofisiologia/métodos , Corantes Fluorescentes , Animais , Desenho de Equipamento , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Animais , Dispositivos Ópticos
3.
Neuron ; 108(1): 66-92, 2020 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-33058767

RESUMO

We propose a new paradigm for dense functional imaging of brain activity to surmount the limitations of present methodologies. We term this approach "integrated neurophotonics"; it combines recent advances in microchip-based integrated photonic and electronic circuitry with those from optogenetics. This approach has the potential to enable lens-less functional imaging from within the brain itself to achieve dense, large-scale stimulation and recording of brain activity with cellular resolution at arbitrary depths. We perform a computational study of several prototype 3D architectures for implantable probe-array modules that are designed to provide fast and dense single-cell resolution (e.g., within a 1-mm3 volume of mouse cortex comprising ∼100,000 neurons). We describe progress toward realizing integrated neurophotonic imaging modules, which can be produced en masse with current semiconductor foundry protocols for chip manufacturing. Implantation of multiple modules can cover extended brain regions.


Assuntos
Encéfalo/diagnóstico por imagem , Neuroimagem Funcional/métodos , Neurônios/patologia , Imagem Óptica/métodos , Animais , Encéfalo/patologia , Encéfalo/fisiologia , Simulação por Computador , Sistemas Computacionais , Neuroimagem Funcional/instrumentação , Procedimentos Analíticos em Microchip , Vias Neurais/diagnóstico por imagem , Vias Neurais/patologia , Vias Neurais/fisiologia , Neurônios/fisiologia , Imagem Óptica/instrumentação , Óptica e Fotônica , Optogenética
4.
IEEE Trans Neural Syst Rehabil Eng ; 28(12): 2627-2636, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33085610

RESUMO

Preterm labor and birth are the primary causes of neonatal morbidities and mortalities. The early detection and treatment of preterm uterine muscular contraction are crucial for the management of preterm labor. In this work, a ring electrode with a wireless electrical recording and stimulating (RE-WERS) system was designed, fabricated, and investigated for the non-invasive monitoring of uterine contraction/relaxation as a diagnostic and therapeutic tool for preterm labor. By using an organ bath system, we confirmed that the uterine contraction force in mice can be decreased by the application of electrical stimulation. Then, the RE-WERS system was inserted non-invasively through the vagina to the cervix of a pregnant minipig, and it successfully recorded the uterine contraction and reflect signals when various electrical stimulating conditions were applied. The difference in the uterine signals before and after the injection of a labor induction drug, such as oxytocin and prostaglandin [Formula: see text], was recorded, and the difference was remarkable. In addition, the uterine signal that was recorded was well matched with the signal of the electromyography (EMG) kit during open abdominal surgery. It seemed that the continuous and various electrical stimulations affected the delay or inhibition of childbirth in the pregnant minipig.


Assuntos
Trabalho de Parto Prematuro , Animais , Eletrodos , Eletromiografia , Feminino , Camundongos , Trabalho de Parto Prematuro/diagnóstico , Gravidez , Suínos , Porco Miniatura , Contração Uterina , Útero
5.
IEEE Trans Biomed Circuits Syst ; 14(4): 636-645, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32746353

RESUMO

This paper presents a device for time-gated fluorescence imaging in the deep brain, consisting of two on-chip laser diodes and 512 single-photon avalanche diodes (SPADs). The edge-emitting laser diodes deliver fluorescence excitation above the SPAD array, parallel to the imager. In the time domain, laser diode illumination is pulsed and the SPAD is time-gated, allowing a fluorescence excitation rejection up to O.D. 3 at 1 ns of time-gate delay. Each SPAD pixel is masked with Talbot gratings to enable the mapping of 2D array photon counts into a 3D image. The 3D image achieves a resolution of 40, 35, and 73 µm in the x, y, and z directions, respectively, in a noiseless environment, with a maximum frame rate of 50 kilo-frames-per-second. We present measurement results of the spatial and temporal profiles of the dual-pulsed laser diode illumination and of the photon detection characteristics of the SPAD array. Finally, we show the imager's ability to resolve a glass micropipette filled with red fluorescent microspheres. The system's 420 µm-wide cross section allows it to be inserted at arbitrary depths of the brain while achieving a field of view four times larger than fiber endoscopes of equal diameter.


Assuntos
Imageamento Tridimensional/instrumentação , Neuroimagem/instrumentação , Imagem Óptica/instrumentação , Eletrônica Médica/instrumentação , Desenho de Equipamento
6.
IEEE J Solid-State Circuits ; 54(11): 2957-2968, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31798187

RESUMO

We present an implantable single photon shank-based imager, monolithically integrated onto a single CMOS IC. The imager comprises of 512 single photon avalanche diodes distributed along two shanks, with a 6-bit depth in-pixel memory and an on-chip digital-to-time converter. To scale down the system to a minimally invasive form factor, we substitute optical filtering and focusing elements with a time-gated, angle-sensitive detection system. The imager computationally reconstructs the position of fluorescent sources within a three-dimensional volume of 3.4 mm × 600 µm × 400 µm.

8.
Nano Lett ; 17(4): 2361-2366, 2017 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-28252971

RESUMO

Manipulation of the chemical vapor deposition graphene synthesis conditions, such as operating P, T, heating/cooling time intervals, and precursor gas concentration ratios (CH4/H2), allowed for synthesis of polycrystalline single-layered graphene with controlled grain sizes. The graphene samples were then suspended on 8 µm diameter patterned holes on a silicon-nitride (Si3N4) substrate, and the in-plane thermal conductivities k(T) for 320 K < T < 510 K were measured to be 2660-1230, 1890-1020, and 680-340 W/m·K for average grain sizes of 4.1, 2.2, and 0.5 µm, respectively, using an opto-thermal Raman technique. Fitting of these data by a simple linear chain model of polycrystalline thermal transport determined k = 5500-1980 W/m·K for single-crystal graphene for the same temperature range above; thus, significant reduction of k was achieved when the grain size was decreased from infinite down to 0.5 µm. Furthermore, detailed elaborations were performed to assess the measurement reliability of k by addressing the hole-edge boundary condition, and the air-convection/radiation losses from the graphene surface.

9.
Sensors (Basel) ; 16(9)2016 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-27598170

RESUMO

We present a 72 × 60, angle-sensitive single photon avalanche diode (A-SPAD) array for lens-less 3D fluorescence lifetime imaging. An A-SPAD pixel consists of (1) a SPAD to provide precise photon arrival time where a time-resolved operation is utilized to avoid stimulus-induced saturation, and (2) integrated diffraction gratings on top of the SPAD to extract incident angles of the incoming light. The combination enables mapping of fluorescent sources with different lifetimes in 3D space down to micrometer scale. Futhermore, the chip presented herein integrates pixel-level counters to reduce output data-rate and to enable a precise timing control. The array is implemented in standard 180 nm complementary metal-oxide-semiconductor (CMOS) technology and characterized without any post-processing.

10.
Opt Lett ; 36(15): 2949-51, 2011 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-21808368

RESUMO

We demonstrate a chip-scale (<1 mm(2)) sensor, the Planar Fourier Capture Array (PFCA), capable of imaging the far field without any off-chip optics. The PFCA consists of an array of angle-sensitive pixels manufactured in a standard semiconductor process, each of which reports one component of a spatial two-dimensional (2D) Fourier transform of the local light field. Thus, the sensor directly captures 2D Fourier transforms of scenes. The effective resolution of our prototype is approximately 400 pixels.


Assuntos
Análise de Fourier , Processamento de Imagem Assistida por Computador/métodos , Fotografação/instrumentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...