Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 12(22)2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36432308

RESUMO

Here, a composite nanoparticle with an acid-base bifunctional structure has been reported for the transesterification of rapeseed oil to produce biodiesel. Triazole-PWA (PWA = 12-tungstophosphoric acid) composite materials with a hexahedral structure are produced using the precipitation method, showing the average particle diameters of 200-800 nm. XPS and FT-IR analyses indicate well-defined chemical bonding of triazole moieties to the PWA. The functionalization and immobilization of PWAs are investigated due to strong interactions with triazole, which significantly improves the thermal stability and even surface area of the heteropoly acid. Furthermore, various ratios of triazole and PWAs are examined using NH3-TPD and CO2-TPD to optimize the bi-functionality of acidity and basicity. The prepared nanomaterials are evaluated during the transesterification of rapeseed oil with methanol to analyze the effect of triazole addition to PWAs according to the different ratios. Overall, the bifunctional triazole-PWA composite nanoparticles exhibit higher fatty acid methyl ester (FAME) conversions than pure PWA nanoparticles. The optimized catalyst with a triazole:PWA ratio of 6:1 exhibits the best FAME-conversion performance due to its relatively large surface area, balance of acidity, and strong basicity from the well-designed chemical nano-structure.

2.
Nanomaterials (Basel) ; 12(19)2022 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-36234453

RESUMO

To design metal nanoparticles (NPs) on a perovskite surface, the exsolution method has been extensively used for efficient catalytic reactions. However, there are still the challenges of finding a combination and optimization for the NPs' control. Thus, we report in situ control of the exsolved Ni NPs from perovskite to apply as a catalyst for dry reforming of methane (DRM). The La0.8Ce0.1Ti0.6Ni0.4O3 (LCTN) is designed by Ce doping to incorporate high amounts of Ni in the perovskite lattice and also facilitate the exsolution phenomenon. By control of the eluted Ni NPs through exsolution, the morphological properties of exsolved Ni NPs are observed to have a size range of 10~49 nm, while the reduction temperatures are changed. At the same time, the chemical structure of the eluted Ni NPs is also changed by an increased reduction temperature to a highly metallic Ni phase with an increased oxygen vacancy at the perovskite oxide surface. The optimized composite nanomaterial displays outstanding catalytic performance of 85.5% CH4 conversion to produce H2 with a value of 15.5 × 1011 mol/s·gcat at 60.2% CO conversion, which shows the importance of the control of the exsolution mechanism for catalytic applications.

3.
Adv Mater ; 34(35): e2203671, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35818108

RESUMO

An ideal dye-based sensing array has essential design requirements, including facile preparation methodology, tolerance to water vapor, a broad range of color-responsive changes, and a simple readout system. Here, a brief synthetic route is developed for ion-pairing dyes exhibiting unusual chromatic changes across the entire visible spectrum. It requires only mixing and precipitation under mild conditions. The dyes are applied to a sensing array containing 12 sensing elements with different initial states. Owing to the numerous color variations of the dyes, the color map generated by the array is highly simple yet sufficiently accurate to distinguish among the different functional groups (such as amines, aldehydes, and carboxylic acids) as well as carbon chain lengths. Principle component analysis (PCA) demonstrates that volatile organic compounds (VOCs) can be well classified according to the color changes of the sensing array. The ion-pairing dyes are embedded into 3D stacked nanofibers via electrospinning, and function as effective harmful-gas (e.g., formaldehyde) sensors with sub-ppm theoretical detection limits (0.15 ppm). Finally, the 3D stacked nanofibers can be employed in an optoelectronic filter system that automatically checks for formaldehyde in the surroundings and also confirms the effective removal of the detected formaldehyde by the gas filter cartridge.

4.
Nanomaterials (Basel) ; 11(8)2021 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-34443787

RESUMO

Emulsion polymerization presents the disadvantage that the physical properties of polymer particles are altered by surfactant adsorption. Therefore, in the soap-free emulsion polymerization method, a hydrophilic initiator is utilized while inducing repulsion among particles on the polymer particle surface, resulting in stable polymer particle production. In this study, we developed a methodology wherein spherical and uniform poly(styrene-co-maleic anhydride) (PSMA)/polyethyleneimine (PEI) core-shell nanoparticles were prepared. Further, their morphology was analyzed. During PSMA polymerization, the addition of up to 30% maleic anhydride (MA) resulted in stable polymerization. In PSMA/PEI nanoparticle fabrication, the number of reactants increased with increased initial monomer feed amounts; consequently, the particle size increased, and as the complete monomer consumption time increased, the particle distribution widened. The styrene (St) copolymer acted as a stabilizer, reducing particle size and narrowing particle distribution. Furthermore, the monomers were more rapidly consumed at high initiator concentrations, irrespective of the initiator used, resulting in increased particle stability and narrowed particle distribution. The shell thickness and particle size were PEI feed ratio dependent, with 0.08 being the optimal PEI-to-MA ratio. The fabricated nanoparticles possess immense potential for application in environmental science and in chemical and health care industries.

5.
Polymers (Basel) ; 12(5)2020 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-32344883

RESUMO

Although equipment-based gas sensor systems (e.g., high-performance liquid chromatography) have been widely applied for formaldehyde gas detection, pre-treatment and expensive instrumentation are required. To overcome these disadvantages, we developed a colorimetric sensor based on polymer-based core-shell nanoparticles (PCSNPs), which are inexpensive, stable, and exhibit enhanced selectivity. Spherical and uniform poly(styrene-co-maleic anhydride) (PSMA)/polyethyleneimine (PEI) core-shell nanoparticles were prepared and then impregnated with Methyl Red (MR), Bromocresol Purple (BCP), or 4-nitrophenol (4-NP) to construct colorimetric sensors for formaldehyde gas. The intrinsic properties of these dyes were maintained when introduced into the PCSNPs. In the presence of formaldehyde, the MR, BCP, and 4-NP colorimetric sensors changed to yellow, red, and gray, respectively. The colorimetric response was maximized at a PEI/PSMA ratio of four, likely owing to the high content of amine groups. Effective formaldehyde gas detection was achieved at a relative humidity of 30% using the MR colorimetric sensor, which exhibited a large color change (92%) in 1 min. Advantageously, this stable sensor allowed sensitive and rapid naked-eye detection of low formaldehyde concentrations (0.5 ppm). Hence, this approach is promising for real-time formaldehyde gas visualization and can also be adapted to other colorimetric gas sensor systems to improve sensitivity and simplicity.

6.
Mater Sci Eng C Mater Biol Appl ; 110: 110693, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32204007

RESUMO

The poor melt property and brittleness of poly(lactic acid) (PLA) cause difficulties in extrusion foaming and decrease product performance in industrial and research fields. In this paper, the rheological properties of PLA resin were improved using an epoxy chain extension reaction, which led to the improvement of pore properties such as morphology and foamability. Reinforced PLA was extruded in a porous filament, and a scaffold was fabricated with design freedom, one-step processing, and dual porosity by extrusion foaming and 3D printing. In addition, in vitro cell culture tests were performed to verify the cell biology assessment and confirm the potential of the scaffold for application as medical scaffolds.


Assuntos
Poliésteres/química , Alicerces Teciduais/química , Materiais Biocompatíveis/química , Teste de Materiais/métodos , Porosidade , Impressão Tridimensional , Engenharia Tecidual/métodos
7.
Foods ; 9(2)2020 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-32059391

RESUMO

Until now, most studies using calcium alginate gel (CAG) have been conducted primarily at room temperature (20 °C) without considering gelation temperature. Moreover, the effects of gelation temperature on the physical properties of CAG beads have not been studied in detail. We aimed to study the effect of gelation temperature on the physical properties (diameter, sphericity, and rupture strength) of CAG beads. Response surface methodology was used in this study. The independent variables were sodium alginate concentration (X1, 1.2%-3.6%, w/v), calcium lactate concentration (X2, 0.5%-4.5%, w/v), gelation temperature (X3, 5-85 °C), and gelation time (X4, 6-30 min). Diameter (Y1, mm), sphericity (Y2, %), and rupture strength (Y3, kPa) were selected as the dependent variables. A decrease in gelation temperature increased the diameter, sphericity and rupture strength of the CAG beads. Additionally, the CAG beads prepared at 5 °C exhibited the highest rupture strength (3976 kPa), lowest calcium content (1.670 mg/g wet), and a regular internal structure. These results indicate that decreasing the gelation temperature slows the calcium diffusion rate in CAG beads, yielding a more regular internal structure and increasing the rupture strength of the beads.

8.
Sci Rep ; 9(1): 3175, 2019 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-30816119

RESUMO

First ever transparent bendable secondary zinc-air batteries were fabricated. Transparent stainless-steel mesh was utilized as the current collector for the electrodes due to its reliable mechanical stability and electrical conductivity. After which separate methods were used to apply the active redox species. For the preparation of the anode, zinc was loaded by an electroplating process to the mesh. For the cathode, catalyst ink solution was spray coated with an airbrush for desired dimensions. An alkaline gel electrolyte layer was used for the electrolyte. Microscale domain control of the materials becomes a crucial factor for fabricating transparent batteries. As for the presented cell, anionic exchange polymer layer has been uniquely incorporated on to the cathode mesh as the separator which becomes a key procedure in the fabrication process for obtaining the desired optical properties of the battery. The ionic resin is applied in a fashion where controlled voids exist between the openings of the grid which facilitates light passage while guaranteeing electrical insulation between the electrodes. Further analysis correlates the electrode dimensions to the transparency of the system. Recorded average light transmittance is 48.8% in the visible light region and exhibited a maximum power density of 9.77 mW/cm2. The produced battery shows both transparent and flexible properties while maintaining a stable discharge/charge operation.

9.
ACS Nano ; 12(7): 6819-6829, 2018 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-29966089

RESUMO

Well-designed electronic configurations and structural properties of electrocatalyst alter the activity, stability, and mass transport for enhanced catalytic reactions. We introduce a nanofibrous oxide-carbon composite by an in situ method of carbon nanofiber (CNF) growth by highly dispersed Ni nanoparticles that are exsoluted from a NiTiO3 surface. The nanofibrous feature has a 3D web structure with improved mass-transfer properties at the electrode. In addition, the design of the CNF/TiO2 support allows for complex properties for excellent stability and activity from the TiO2 oxide support and high electric conductivity through the connected CNF, respectively. Developed CNF/TiO2-Pt nanofibrous catalyst displays exemplary oxygen-reduction reaction (ORR) activity with significant improvement of the electrochemical surface area. Moreover, exceptional resistance to carbon corrosion and Pt dissolution is proven by durability-test protocols based on the Department of Energy. These results are well-reflected to the single-cell tests with even-better performance at the kinetic zone compared to the commercial Pt/C under different operation conditions. CNF/TiO2-Pt displays an enhanced active state due to the strong synergetic interactions, which decrease the Pt d-band vacancy by electron transfer from the oxide-carbon support. A distinct reaction mechanism is also proposed and eventually demonstrates a promising example of an ORR electrocatalyst design.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...