Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 10924, 2024 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-38740866

RESUMO

Bovine intramuscular fat (IMF), commonly referred to as marbling, is regulated by lipid metabolism, which includes adipogenesis, lipogenesis, glycerolipid synthesis, and lipolysis. In recent years, breeding researchers have identified single nucleotide polymorphisms (SNPs) as useful marker-assisted selection tools for improving marbling scores in national breeding programs. These included causal SNPs that induce phenotypic variation. MicroRNAs (miRNAs) are small highly conserved non-coding RNA molecules that bind to multiple non-coding regions. They are involved in post-transcriptional regulation. Multiple miRNAs may regulate a given target. Previously, three SNPs in the GPAM 3' UTR and four miRNAs were identified through in silico assays. The aim of this study is to verify the binding ability of the four miRNAs to the SNPs within the 3'UTR of GPAM, and to identify the regulatory function of miR-375 in the expression of genes related to lipid metabolism in mammalian adipocytes. It was verified that the four miRNAs bind to the GPAM 3'UTR, and identified that the miR-375 sequence is highly conserved. Furthermore, it was founded that miR-375 upregulated the GPAM gene, C/EBPα, PPARγ and lipid metabolism-related genes and promoted lipid droplet accumulation in 3T3-L1 cells. In conclusion, these results suggest that miR-375 is a multifunctional regulator of multiple lipid metabolism-related genes and may aid in obesity research as a biomarker.


Assuntos
Regiões 3' não Traduzidas , Células 3T3-L1 , Metabolismo dos Lipídeos , MicroRNAs , Polimorfismo de Nucleotídeo Único , MicroRNAs/genética , MicroRNAs/metabolismo , Animais , Camundongos , Metabolismo dos Lipídeos/genética , Bovinos , Regulação da Expressão Gênica , Adipócitos/metabolismo , Adipogenia/genética
2.
J Microbiol Biotechnol ; 34(2): 262-269, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38213284

RESUMO

Panax ginseng has been widely applied as an important herb in traditional medicine to treat numerous human disorders. However, the inflammatory regulation effect of P. ginseng distillate (GSD) has not yet been fully assessed. To determine whether GSD can ameliorate inflammatory processes, a GSD was prepared using the vacuum distillation process for the first time, and the regulation effect on lipopolysaccharide-induced macrophages was assessed. The results showed that GSD effectively inhibited nitric oxide (NO) formation and activation of inducible nitric oxide synthase (iNOS) mRNA in murine macrophage cell, but not cyclooxygenase-2 production. The mRNA expression pattern of tumor necrosis factor alpha and IL-6 were also reduced by GSD. Furthermore, we confirmed that GSD exerted its anti-inflammatory effects by downregulating c-Jun NH2-terminal kinase (JNK) phosphorylation, the extracellular signal-regulated kinase phosphorylation, and signaling pathway of nuclear factor kappa B (NF-κB). Our findings revealed that the inflammatory regulation activity of GSD could be induced by iNOS and NO formation inhibition mediated by regulation of nuclear factor kappa B and p38/JNK MAPK pathways.


Assuntos
Medicamentos de Ervas Chinesas , NF-kappa B , Panax , Extratos Vegetais , Humanos , Animais , Camundongos , NF-kappa B/metabolismo , Lipopolissacarídeos/farmacologia , Vácuo , Anti-Inflamatórios/farmacologia , Células RAW 264.7 , Óxido Nítrico Sintase Tipo II/metabolismo , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Panax/metabolismo , RNA Mensageiro , Óxido Nítrico/metabolismo
3.
Adv Mater ; 36(5): e2306205, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37847822

RESUMO

Despite the great potential of solid oxide electrochemical cells (SOCs) as highly efficient energy conversion devices, the undesirable high operating temperature limits their wider applicability. Herein, a novel approach to developing high-performance low-temperature SOCs (LT-SOCs) is presented through the use of an Er, Y, and Zr triple-doped bismuth oxide (EYZB). This study demonstrates that EYZB exhibits > 147 times higher ionic conductivity of 0.44 S cm-1 at 600 °C compared to commercial Y-stabilized zirconia electrolyte with excellent stability over 1000 h. By rationally incorporating EYZB in composite electrodes and bilayer electrolytes, the zirconia-based electrolyte LT-SOC achieves the unprecedentedly high performance of 3.45 and 2.02 W cm-2 in the fuel cell mode and 2.08 and 0.95 A cm-2 in the electrolysis cell mode at 700 °C and 600 °C, respectively. Further, a distinctive microstructural feature of EYZB that largely extends triple phase boundary at the interface is revealed through digital twinning. This work provides insights for developing high-performance LT-SOCs.

4.
ACS Nano ; 18(1): 819-828, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38153349

RESUMO

As semiconductor scaling continues to reach sub-nanometer levels, two-dimensional (2D) semiconductors are emerging as a promising candidate for the post-silicon material. Among these alternatives, Bi2O2Se has risen as an exceptionally promising 2D semiconductor thanks to its excellent electrical properties, attributed to its appropriate bandgap and small effective mass. However, unlike other 2D materials, growth of large-scale Bi2O2Se films with precise layer control is still challenging due to its large surface energy caused by relatively strong interlayer electrostatic interactions. Here, we present the successful growth of a wafer-scale (∼3 cm) Bi2O2Se film with precise thickness control down to the monolayer level on TiO2-terminated SrTiO3 using metal-organic chemical vapor deposition (MOCVD). Scanning transmission electron microscopy (STEM) analysis confirmed the formation of a [BiTiO4]1- interfacial structure, and density functional theory (DFT) calculations revealed that the formation of [BiTiO4]1- significantly reduced the interfacial energy between Bi2O2Se and SrTiO3, thereby promoting 2D growth. Additionally, spectral responsivity measurements of two-terminal devices confirmed a bandgap increase of up to 1.9 eV in monolayer Bi2O2Se, which is consistent with our DFT calculations. Finally, we demonstrated high-performance Bi2O2Se field-effect transistor (FET) arrays, exhibiting an excellent average electron mobility of 56.29 cm2/(V·s). This process is anticipated to enable wafer-scale applications of 2D Bi2O2Se and facilitate exploration of intriguing physical phenomena in confined 2D systems.

5.
Sci Adv ; 9(39): eadi8918, 2023 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-37756405

RESUMO

Numerous wireless optogenetic systems have been reported for practical tether-free optogenetics in freely moving animals. However, most devices rely on battery-powered or coil-powered systems requiring periodic battery replacement or bulky, high-cost charging equipment with delicate antenna design. This leads to spatiotemporal constraints, such as limited experimental duration due to battery life or animals' restricted movement within specific areas to maintain wireless power transmission. In this study, we present a wireless, solar-powered, flexible optoelectronic device for neuromodulation of the complete freely behaving subject. This device provides chronic operation without battery replacement or other external settings including impedance matching technique and radio frequency generators. Our device uses high-efficiency, thin InGaP/GaAs tandem flexible photovoltaics to harvest energy from various light sources, which powers Bluetooth system to facilitate long-term, on-demand use. Observation of sustained locomotion behaviors for a month in mice via secondary motor cortex area stimulation demonstrates the notable capabilities of our device, highlighting its potential for space-free neuromodulating applications.


Assuntos
Optogenética , Tecnologia sem Fio , Camundongos , Animais , Optogenética/métodos , Movimento , Fontes de Energia Elétrica
6.
Medicine (Baltimore) ; 102(39): e35251, 2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37773862

RESUMO

BACKGROUND: The purpose of this study was to compare the functional outcomes and re-dislocation rates of medial patellofemoral ligament (MPFL) reconstruction, MPFL repair, combined proximal realignment (CPR), and conservative management for primary patellar dislocation by conducting a systematic literature search of the available studies. The hypothesis was that MPFL repair and MPFL reconstruction would be better options for treating primary patellar dislocation. METHODS: Randomized controlled trials or prospective studies of primary patellar dislocation treated with MPFL reconstruction, MPFL repair, CPR, or conservative management were identified from the MEDLINE, EMBASE, and the Cochrane Library databases through December 31, 2021. A total of 626 patients met the prespecified inclusion criteria. The methodological quality of each study was assessed using a risk of bias table, Detsky quality index, and Newcastle-Ottawa Scale. The end-point data collected included comparisons of the mean in functional scores on knee outcomes scales and the number of patients who experienced re-dislocation. A network meta-analysis of the relevant literature was performed to investigate which treatment showed better outcomes. RESULTS: In total, 10 trials were included in this study. There was no statistically significant difference in the subgroup analysis in terms of the functional outcomes among MPFL reconstruction, MPFL repair, CPR, and conservative management. However, MPFL reconstruction showed statistically significantly better outcomes than MPFL repair, CPR, or conservative management in terms of the re-dislocation rate. Additionally, surface under the cumulative ranking curve percentage showed that MPFL reconstruction had a lower probability of re-dislocation than MPFL repair even though there was no significant difference (0.24, 95% confidence interval: 0.02-2.91). CONCLUSION: Using a network meta-analysis, this meta-analysis showed that there was no significant difference in functional outcomes in a subgroup analysis. In re-dislocation subgroup analysis, MPFL repair and MPFL reconstruction produced significantly better results than other treatments. Also, surface under the cumulative ranking curve percentage showed that MPFL reconstruction had a lower probability of re-dislocation than MPFL repair.


Assuntos
Luxações Articulares , Instabilidade Articular , Luxação Patelar , Ligamento Patelar , Humanos , Luxação Patelar/cirurgia , Tratamento Conservador , Metanálise em Rede , Estudos Prospectivos , Ligamentos Articulares/cirurgia , Instabilidade Articular/cirurgia , Ligamento Patelar/cirurgia
7.
Adv Sci (Weinh) ; 10(30): e2304715, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37565602

RESUMO

On-demand photo-steerable amphibious rolling motions are generated by the structural engineering of monolithic soft locomotors. Photo-morphogenesis of azobenzene-functionalized liquid crystal polymer networks (azo-LCNs) is designed from spiral ribbon to helicoid helices, employing a 270° super-twisted nematic molecular geometry with aspect ratio variations of azo-LCN strips. Unlike the intermittent and biased rolling of spiral ribbon azo-LCNs with center-of-mass shifting, the axial torsional torque of helicoid azo-LCNs enables continuous and straight rolling at high rotation rates (≈720 rpm). Furthermore, center-tapered helicoid structures with wide edges are introduced for effectively accelerating photo-motilities while maintaining directional controllability. Irrespective of surface conditions, the photo-induced rotational torque of center-tapered helicoid azo-LCNs can be transferred to interacting surfaces, as manifested by steep slope climbing and paddle-like swimming multimodal motilities. Finally, the authors demonstrate continuous curvilinear guidance of soft locomotors, bypassing obstacles and reaching desired destinations through real-time on-demand photo-steering.

8.
Sci Adv ; 9(22): eadh1765, 2023 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-37256939

RESUMO

Continuous glucose monitoring (CGM) allows patients with diabetes to manage critical disease effectively and autonomously and prevent exacerbation. A painless, wireless, compact, and minimally invasive device that can provide CGM is essential for monitoring the health conditions of freely moving patients with diabetes. Here, we propose a glucose-responsive fluorescence-based highly sensitive biodegradable microneedle CGM system. These ultrathin and ultralight microneedle sensor arrays continuously and precisely monitored glucose concentration in the interstitial fluid with minimally invasive, pain-free, wound-free, and skin inflammation-free outcomes at various locations and thicknesses of the skin. Bioresorbability in the body without a need for device removal after use was a key characteristic of the microneedle glucose sensor. We demonstrated the potential long-term use of the bioresorbable device by applying the tether-free CGM system, thus confirming the successful detection of glucose levels based on changes in fluorescence intensity. In addition, this microneedle glucose sensor with a user-friendly designed home diagnosis system using mobile applications and portable accessories offers an advance in CGM and its applicability to other bioresorbable, wearable, and implantable monitoring device technology.


Assuntos
Diabetes Mellitus , Aplicativos Móveis , Humanos , Glicemia , Automonitorização da Glicemia , Smartphone , Glucose
9.
Adv Mater ; 34(30): e2200946, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35635443

RESUMO

Graphene is known as a superstiff and extremely strong material. Hence, applying strains greater than 1% to graphene and simultaneously measuring changes in its physical properties has been challenging because of the limited methodologies for measuring both high strain and other physical properties. Here, Raman scattering measurement of suspended graphene under extremely high biaxial strain as large as 6.1% using an atomic force microscopy (AFM)-Raman spectroscopy measurement tool is reported. Nanoindentation is performed using AFM tips machined to have a flat top and a hole shape, resulting in a strained graphene area sufficiently large to enable the acquisition of a Raman signal. At the same time, the laser light is focused on the strained flat area of the graphene membrane. The Raman signals of the G and 2D bands of graphene are redshifted by 282 and 684 cm-1 , respectively, which is unprecedented for graphene. This measurement technique provides an effective methodology to measure variations in the physical properties of atomically thin materials under superhigh strain.

10.
Nat Chem Biol ; 18(7): 713-723, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35484435

RESUMO

Despite advances in resolving the structures of multi-pass membrane proteins, little is known about the native folding pathways of these complex structures. Using single-molecule magnetic tweezers, we here report a folding pathway of purified human glucose transporter 3 (GLUT3) reconstituted within synthetic lipid bilayers. The N-terminal major facilitator superfamily (MFS) fold strictly forms first, serving as a structural template for its C-terminal counterpart. We found polar residues comprising the conduit for glucose molecules present major folding challenges. The endoplasmic reticulum membrane protein complex facilitates insertion of these hydrophilic transmembrane helices, thrusting GLUT3's microstate sampling toward folded structures. Final assembly between the N- and C-terminal MFS folds depends on specific lipids that ease desolvation of the lipid shells surrounding the domain interfaces. Sequence analysis suggests that this asymmetric folding propensity across the N- and C-terminal MFS folds prevails for metazoan sugar porters, revealing evolutionary conflicts between foldability and functionality faced by many multi-pass membrane proteins.


Assuntos
Proteínas Facilitadoras de Transporte de Glucose , Bicamadas Lipídicas , Animais , Proteínas Facilitadoras de Transporte de Glucose/genética , Proteínas Facilitadoras de Transporte de Glucose/metabolismo , Transportador de Glucose Tipo 3/metabolismo , Humanos , Bicamadas Lipídicas/química , Proteínas de Membrana/metabolismo , Dobramento de Proteína , Estrutura Secundária de Proteína
11.
Nanomaterials (Basel) ; 12(6)2022 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-35335776

RESUMO

Homogenously dispersed Cu oxide nanoparticles on laser-induced graphene (LIG) were fabricated using a simple two-step laser irradiation. This work emphasized the synergetic photo-electrothermal effect in Cu oxide particles embedded in LIG. Our flexible hybrid composites exhibited high mechanical durability and excellent thermal properties. Moreover, the Cu oxide nanoparticles in the carbon matrix of LIG enhanced the light trapping and multiple electron internal scattering for the electrothermal effect. The best conditions for deicing devices were also studied by controlling the amount of Cu solution. The deicing performance of the sample was demonstrated, and the results indicate that the developed method could be a promising strategy for maintaining lightness, efficiency, excellent thermal performance, and eco-friendly 3D processing capabilities.

12.
Nano Lett ; 22(4): 1726-1733, 2022 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-35133170

RESUMO

A rechargeable aluminum-ion battery based on chloroaluminate electrolytes has received intense attention due to the high abundance and chemical stability of aluminum. However, the fundamental intercalation processes and dynamics in these battery systems remain unresolved. Here, the energetics and dynamics of chloroaluminate ion intercalation in atomically thin single crystal graphite are investigated by fabricating mesoscopic devices for charge transport and operando optical microscopy. These mesoscopic measurements are compared to the high-performance rechargeable Al-based battery consisting of a few-layer graphene-multiwall carbon nanotube composite cathode. These composites exhibit a 60% capacity enhancement over pyrolytic graphite, while an ∼3-fold improvement in overall ion diffusivity is also obtained exhibiting ∼1% of those in atomically thin single crystals. Our results thus establish the distinction between intrinsic and ensemble electrochemical behavior in Al-based batteries and show that engineering ion transport in these devices can yet lead to vast improvements in battery performance.

13.
Vaccines (Basel) ; 9(11)2021 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-34835159

RESUMO

How does vaccination against foot-and-mouth disease (FMD) affect pregnant cows? Vaccination is the most effective method of preventing the spread of FMD, but it is linked to sporadic side effects, such as abortion and premature birth, which result in economic loss. In this study, ruminoreticular temperature and body activity were measured before and after FMD vaccination using a ruminoreticular biocapsule sensor in Hanwoo cows at different stages of pregnancy. Compared to the unvaccinated groups, the ruminoreticular temperature increased 12 h after vaccination in the vaccinated groups. This increase in temperature is significantly correlated to vaccination. Compared to the nonpregnant and early pregnancy groups, the ruminoreticular temperature of the late pregnancy group increased sharply by more than 40 °C. Moreover, in nonpregnant and early pregnancy groups, a rapid increase in body activity was observed after FMD vaccinations. Of the 73 pregnant vaccinated cows in the study, a total of five cases had side effects (four abortions and one premature birth). Therefore, changes in the ruminoreticular temperature and activity in pregnant cows can be used as raw data to further clarify the association of FMD vaccination with the loss of a fetus and possibly predict abortion, miscarriage, and premature birth following FMD vaccination.

14.
Nanomaterials (Basel) ; 11(11)2021 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-34835856

RESUMO

The replacement of electro-thermal material in heaters with lighter and easy-to-process materials has been extensively studied. In this study, we demonstrate that laser-induced graphene (LIG) patterns could be a good candidate for the electro-thermal pad. We fabricated LIG heaters with various thermal patterns on the commercial polyimide films according to laser scanning speed using an ultraviolet pulsed laser. We adopted laser direct writing (LDW) to irradiate on the substrates with computer-aided 2D CAD circuit data under ambient conditions. Our highly conductive and flexible heater was investigated by scanning electron microscopy, transmission electron microscopy, Raman spectroscopy, thermogravimetric analysis, X-ray photoelectron spectroscopy, X-ray diffraction, and Brunauer-Emmett-Teller. The influence of laser scanning speed was evaluated for electrical properties, thermal performance, and durability. Our LIG heater showed promising characteristics such as high porosity, light weight, and small thickness. Furthermore, they demonstrated a rapid response time, reaching equilibrium in less than 3 s, and achieved temperatures up to 190 °C using relatively low DC voltages of approximately 10 V. Our LIG heater can be utilized for human wearable thermal pads and ice protection for industrial applications.

15.
ACS Nano ; 15(11): 17472-17479, 2021 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-34751557

RESUMO

Binary metal sulfides have been explored as sodium storage materials owing to their high theoretical capacity and high stable cyclability. Nevertheless, their relative high charge voltage and relatively low practical capacity make them less attractive as an anode material. To resolve the problem, addition of alloying elements is considerable. Copper antimony sulfide is investigated as a representative case. In this study, we do not only perform electrochemical characterization on CuSbS2, but also investigate its nonequilibrium sodiation pathway employing in-/ex situ transmission electron microscopy, in situ X-ray diffraction, and density functional theory calculations. Our finding provides valuable insights on sodium storage into ternary metal sulfide including an alloying element.

16.
Nano Lett ; 21(18): 7479-7485, 2021 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-34491760

RESUMO

Many biological processes employ mechanisms involving the locations and interactions of multiple components. Given that most biological processes occur in three dimensions, the simultaneous measurement of three-dimensional locations and interactions is necessary. However, the simultaneous three-dimensional precise localization and measurement of interactions in real time remains challenging. Here, we report a new microscopy technique to localize two spectrally distinct particles in three dimensions with an accuracy (2.35σ) of tens of nanometers with an exposure time of 100 ms and to measure their real-time interactions using fluorescence resonance energy transfer (FRET) simultaneously. Using this microscope, we tracked two distinct vesicles containing t-SNAREs or v-SNARE in three dimensions and observed FRET simultaneously during single-vesicle fusion in real time, revealing the nanoscale motion and interactions of single vesicles in vesicle fusion. Thus, this study demonstrates that our microscope can provide detailed information about real-time three-dimensional nanoscale locations, motion, and interactions in biological processes.


Assuntos
Fenômenos Biológicos , Transferência Ressonante de Energia de Fluorescência , Fusão de Membrana , Microscopia , Proteínas SNARE
17.
Nanomaterials (Basel) ; 11(4)2021 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-33917897

RESUMO

Bio-compatible strain sensors based on elastomeric conductive polymer composites play pivotal roles in human monitoring devices. However, fabricating highly sensitive and skin-like (flexible and stretchable) strain sensors with broad working range is still an enormous challenge. Herein, we report on a novel fabrication technology for building elastomeric conductive skin-like composite by mixing polymer solutions. Our e-skin substrates were fabricated according to the weight of polydimethylsiloxane (PDMS) and photosensitive polyimide (PSPI) solutions, which could control substrate color. An e-skin and 3-D flexible strain sensor was developed with the formation of laser induced graphene (LIG) on the skin-like substrates. For a one-step process, Laser direct writing (LDW) was employed to construct superior durable LIG/PDMS/PSPI composites with a closed-pore porous structure. Graphene sheets of LIG coated on the closed-porous structure constitute a deformable conductive path. The LIG integrated with the closed-porous structure intensifies the deformation of the conductive network when tensile strain is applied, which enhances the sensitivity. Our sensor can efficiently monitor not only energetic human motions but also subtle oscillation and physiological signals for intelligent sound sensing. The skin-like strain sensor showed a perfect combination of ultrawide sensing range (120% strain), large sensitivity (gauge factor of ~380), short response time (90 ms) and recovery time (140 ms), as well as superior stability. Our sensor has great potential for innovative applications in wearable health-monitoring devices, robot tactile systems, and human-machine interface systems.

18.
Nanomaterials (Basel) ; 10(10)2020 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-32987736

RESUMO

Due to the limited availability of agricultural land, pH sensing is becoming more and more important these days to produce efficient agricultural products. Therefore, to fabricate eco-friendly and disposable sensors, the black carbon, which is called biochar, is formed by irradiation of a UV pulsed laser having a wavelength of 355 nm onto wood and applying the resulting material as a pH sensor. The surfaces of three types of wood (beech, cork oak, and ash) were converted to the graphitic structure after UV laser irradiation; their morphologies were investigated. In addition, since the content of lignin, an organic polymer, is different for each wood, optimal laser irradiation conditions (laser fluence) needed to form these woods into pH sensors were considered. Depending on the degree of oil-like material generated after laser irradiation, a disposable pH sensor that can be used from one to three times is fabricated; due to the environmental characteristics of wood and biochar, the sensor shows high availability in that it can be easily discarded after use on agricultural land. After that, it can be used as filter in soil. Our wood-based pH sensor sensitively measures sequential changes from pH 4 to pH 10 and shows a very linear change of △R/R, indicating its potential for use in agriculture.

19.
J Phys Chem Lett ; 11(8): 3039-3044, 2020 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-32223266

RESUMO

Metal and transition-metal dichalcogenide (TMD) hybrid systems have been attracting growing research attention because exciton-plasmon coupling is a desirable means of tuning the physical properties of TMD materials. Competing effects of metal nanostructures, such as the local electromagnetic field enhancement and luminescence quenching, affect the photoluminescence (PL) characteristics of metal/TMD nanostructures. In this study, we prepared TMD MoS2 monolayers on hexagonal arrays of Au nanodots and investigated their physical properties by micro-PL and surface photovoltage (SPV) measurements. MoS2 monolayers on bare Au nanodots exhibited higher PL intensities than those of MoS2 monolayers on 5-nm-thick Al2O3-coated Au nanodots. The Al2O3 spacer layer blocked charge transfer at the Au/MoS2 interface but allowed the transfer of mechanical strain to the MoS2 monolayers on the nanodots. The SPV mapping results revealed not only the electron-transfer behavior at the Au/MoS2 contacts but also the lateral drift of charge carriers at the MoS2 surface under light illumination, which corresponds to nonradiative relaxation processes of the photogenerated excitons.

20.
Biochemistry ; 59(3): 285-289, 2020 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-31644266

RESUMO

The modular biosynthetic pathway of ribosomally synthesized and post-translationally modified peptides (RiPPs) enhances their engineering potential for exploring new structures and biological functions. The ω-ester-containing peptides (OEPs), a subfamily of RiPPs, have distinct side-to-side ester or amide linkages and frequently present more than one macrocyclic domain in a "beads-on-a-string" structure. In an effort to improve the engineering potential of RiPPs, we present here the idea that the multidomain architecture of an OEP, plesiocin, can be exploited to create a bifunctional modified peptide. Characterization of plesiocin variants revealed that strong chymotrypsin inhibition relies on the bicyclic structure of the domain in which a leucine residue in the hairpin loop functions as a specificity determinant. Four domains of plesiocin promote simultaneous binding of multiple enzymes, where the C-terminal domain binds chymotrypsin most efficiently. Using this information, we successfully engineered a plesiocin variant in which two different domains inhibit chymotrypsin and trypsin. This result suggests that the multidomain architecture of OEPs is a useful platform for engineering multifunctional hybrid RiPPs.


Assuntos
Quimotripsina/antagonistas & inibidores , Peptídeos/química , Engenharia de Proteínas , Vias Biossintéticas/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão , Quimotripsina/química , Clonagem Molecular , Escherichia coli/genética , Ésteres/química , Peptídeos/genética , Peptídeos/isolamento & purificação , Inibidores de Proteases/química , Inibidores de Proteases/farmacologia , Ligação Proteica/genética , Domínios Proteicos/genética , Processamento de Proteína Pós-Traducional/genética , Ribossomos/química , Ribossomos/genética , Tripsina/química , Tripsina/genética , Inibidores da Tripsina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...