Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nutrients ; 15(19)2023 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-37836574

RESUMO

The purpose of this study was to compare the effects of nutritional supplement drinks (NSDs) and nutritional education (NE) on the nutritional status and physical performance of older nursing home residents who were at risk of malnutrition. This study was a clustered, randomized, parallel, multi-center clinical trial, with 107 participants more than 65 years old and at risk of malnutrition recruited from several nursing homes in this study. Participants were divided into two groups: an NE group (n = 50) and an NSD group (n = 57). The NE group was given NE by a dietitian, while the NSD group was provided with two packs of NSD except receiving NE (Mei Balance, Meiji Holdings, Tokyo, Japan) per day as a snack between meals and before bed. Anthropometric data, blood pressure, nutritional status, blood biochemical biomarkers, and physical performance were measured before and after 12-week interventions. After 12 weeks of NE combined with NSD intervention, body weight, body-mass index, the mini nutritional assessment-short form (MNA-SF) score, walking speed, and SF-36 questionnaire score were improved in older nursing home residents at risk of malnutrition.


Assuntos
Desnutrição , Estado Nutricional , Humanos , Idoso , Avaliação Nutricional , Desnutrição/prevenção & controle , Casas de Saúde , Desempenho Físico Funcional , Avaliação Geriátrica
2.
PLoS Comput Biol ; 19(9): e1011444, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37695793

RESUMO

Different genes form complex networks within cells to carry out critical cellular functions, while network alterations in this process can potentially introduce downstream transcriptome perturbations and phenotypic variations. Therefore, developing efficient and interpretable methods to quantify network changes and pinpoint driver genes across conditions is crucial. We propose a hierarchical graph representation learning method, called iHerd. Given a set of networks, iHerd first hierarchically generates a series of coarsened sub-graphs in a data-driven manner, representing network modules at different resolutions (e.g., the level of signaling pathways). Then, it sequentially learns low-dimensional node representations at all hierarchical levels via efficient graph embedding. Lastly, iHerd projects separate gene embeddings onto the same latent space in its graph alignment module to calculate a rewiring index for driver gene prioritization. To demonstrate its effectiveness, we applied iHerd on a tumor-to-normal GRN rewiring analysis and cell-type-specific GCN analysis using single-cell multiome data of the brain. We showed that iHerd can effectively pinpoint novel and well-known risk genes in different diseases. Distinct from existing models, iHerd's graph coarsening for hierarchical learning allows us to successfully classify network driver genes into early and late divergent genes (EDGs and LDGs), emphasizing genes with extensive network changes across and within signaling pathway levels. This unique approach for driver gene classification can provide us with deeper molecular insights. The code is freely available at https://github.com/aicb-ZhangLabs/iHerd. All other relevant data are within the manuscript and supporting information files.


Assuntos
Aprendizado Profundo , Encéfalo , Aprendizagem , Registros
3.
ACS Appl Mater Interfaces ; 15(32): 38185-38200, 2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37549133

RESUMO

Preterm birth (PTB) is the leading cause of infant deaths globally. Current clinical measures often fail to identify women who may deliver preterm. Therefore, accurate screening tools are imperative for early prediction of PTB. Here, we show that Raman spectroscopy is a promising tool for studying biological interfaces, and we examine differences in the maternal metabolome of the first trimester plasma of PTB patients and those that delivered at term (healthy). We identified fifteen statistically significant metabolites that are predictive of the onset of PTB. Mass spectrometry metabolomics validates the Raman findings identifying key metabolic pathways that are enriched in PTB. We also show that patient clinical information alone and protein quantification of standard inflammatory cytokines both fail to identify PTB patients. We show for the first time that synergistic integration of Raman and clinical data guided with machine learning results in an unprecedented 85.1% accuracy of risk stratification of PTB in the first trimester that is currently not possible clinically. Correlations between metabolites and clinical features highlight the body mass index and maternal age as contributors of metabolic rewiring. Our findings show that Raman spectral screening may complement current prenatal care for early prediction of PTB, and our approach can be translated to other patient-specific biological interfaces.


Assuntos
Nascimento Prematuro , Gravidez , Humanos , Feminino , Recém-Nascido , Nascimento Prematuro/diagnóstico , Nascimento Prematuro/prevenção & controle , Primeiro Trimestre da Gravidez , Análise Espectral Raman , Metabolômica
4.
J Comput Biol ; 29(7): 619-633, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35584295

RESUMO

Recent advances in single-cell sequencing assay for transposase-accessible chromatin (scATAC-seq) have allowed simultaneous epigenetic profiling over thousands of individual cells to dissect the cellular heterogeneity and elucidate regulatory mechanisms at the finest possible resolution. However, scATAC-seq is challenging to model computationally due to the ultra-high dimensionality, low signal-to-noise ratio, complex feature interactions, and high vulnerability to various confounding factors. In this study, we present Translator, an efficient transfer learning approach to capture generalizable chromatin interactions from high-quality (HQ) reference scATAC-seq data to obtain robust cell representations in low-to-moderate quality target scATAC-seq data. We applied Translator on various simulated and real scATAC-seq datasets and demonstrated that Translator could learn more biologically meaningful cell representations than other methods by incorporating information learned from the reference data, thus facilitating various downstream analyses such as clustering and motif enrichment measurements. Moreover, Translator's block-wise deep learning framework can handle nonlinear relationships with restricted connections using fewer parameters to boost computational efficiency through Graphics Processing Unit (GPU) parallelism. Finally, we have implemented Translator as a free software package available for the community to leverage large-scale, HQ reference data to study target scATAC-seq data.


Assuntos
Sequenciamento de Cromatina por Imunoprecipitação , Análise de Dados , Cromatina/genética , Aprendizado de Máquina , Análise de Célula Única/métodos , Transposases
5.
Hum Genet ; 140(3): 477-492, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32915251

RESUMO

Next-generation sequencing (NGS) is an incredibly useful tool for genetic disease diagnosis. However, the most commonly used bioinformatics methods for analyzing sequence reads insufficiently discriminate genomic regions with extensive sequence identity, such as gene families and pseudogenes, complicating diagnostics. This problem has been recognized for specific genes, including many involved in human disease, and diagnostic labs must perform additional costly steps to guarantee accurate diagnosis in these cases. Here we report a new data analysis method based on the comparison of read depth between highly homologous regions to identify misalignment. Analyzing six clinically important genes-CYP21A2, GBA, HBA1/2, PMS2, and SMN1-each exhibiting misalignment issues related to homology, we show that our technique can correctly identify potential misalignment events and be used to make appropriate calls. Combined with long-range PCR and/or MLPA orthogonal testing, our clinical laboratory can improve variant calling with minimal additional cost. We propose an accurate and cost-efficient NGS testing procedure that will benefit disease diagnostics, carrier screening, and research-based population studies.


Assuntos
Doenças Genéticas Inatas/diagnóstico , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Algoritmos , Humanos , Reação em Cadeia da Polimerase , Polimorfismo de Nucleotídeo Único , Pseudogenes
6.
J Mol Diagn ; 22(5): 670-678, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32092540

RESUMO

When a potential disease-causing variant is detected in a proband, parental testing is used to determine the mode of inheritance. This study demonstrates that next-generation sequencing (NGS) is uniquely well suited for parental testing, in particular because of its ability to detect clinically relevant germline mosaicism. Parental variant testing by NGS was performed in a clinical laboratory for 1 year. The detection of mosaicism by NGS was compared with its detection by Sanger sequencing. Eight cases of previously unrevealed mosaicism were detected by NGS across eight different genes. Mosaic variants were differentiated from sequencing noise using custom bioinformatics analyses in combination with familial inheritance data and complementary Sanger sequencing. Sanger sequencing detected mosaic variants with allele fractions ≥8% by NGS, but could not detect mosaic variants below that level. Detection of germline mosaicism by NGS is invaluable to parents, providing a more accurate recurrence risk that can alter decisions on family planning and pregnancy management. Because NGS can also confirm parentage and increase scalability, it simultaneously streamlines and strengthens the variant curation process. These features make NGS the ideal method for parental testing, superior even to Sanger sequencing for most genomic loci.


Assuntos
Células Germinativas , Sequenciamento de Nucleotídeos em Larga Escala , Mosaicismo , Alelos , Biologia Computacional/métodos , Feminino , Variação Genética , Genótipo , Heterozigoto , Humanos , Padrões de Herança , Masculino , Mutação , Linhagem , Análise de Sequência de DNA
7.
Bioinformatics ; 29(14): 1713-7, 2013 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-23740743

RESUMO

MOTIVATION: In addition to alternative splicing, alternative polyadenylation has also been identified as a critical and prevalent regulatory mechanism in human gene expression. However, the mechanism of alternative polyadenylation selection and the involved factors is still largely unknown. RESULTS: We use the ENCODE data to scan DNA functional elements, including chromatin accessibility and histone modification, around transcript cleavage sites. Our results demonstrate that polyadenylation sites tend to be less sensitive to DNase I. However, these polyadenylation sites have preference in nucleosome-depleted regions, indicating the involvement of chromatin higher-order structure rather than nucleosomes in the resultant lower chromatin accessibility. More interestingly, for genes using two polyadenylation sites, the distal sites show even lower chromatin accessibility compared with the proximal sites or the unique sites of genes using only one polyadenylation site. We also observe that the histone modification mark, histone H3 lysine 36 tri-methylation (H3K36Me3), exhibits different patterns around the cleavage sites of genes using multiple polyadenylation sites from those of genes using a single polyadenylation site. Surprisingly, the H3K36Me3 levels are comparable among the alternative polyadenylation sites themselves. In summary, polyadenylation and alternative polyadenylation are closely related to functional elements on the DNA level. CONTACT: liang.chen@usc.edu.


Assuntos
Cromatina/química , Histonas/metabolismo , Poliadenilação , Linhagem Celular , Desoxirribonuclease I , Humanos , Células K562 , Nucleossomos/química
8.
Nucleic Acids Res ; 37(Web Server issue): W545-51, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19420060

RESUMO

iSARST is a web server for efficient protein structural similarity searches. It is a multi-processor, batch-processing and integrated implementation of several structural comparison tools and two database searching methods: SARST for common structural homologs and CPSARST for homologs with circular permutations. iSARST allows users submitting multiple PDB/SCOP entry IDs or an archive file containing many structures. After scanning the target database using SARST/CPSARST, the ordering of hits are refined with conventional structure alignment tools such as FAST, TM-align and SAMO, which are run in a PC cluster. In this way, iSARST achieves a high running speed while preserving the high precision of refinement engines. The final outputs include tables listing co-linear or circularly permuted homologs of the query proteins and a functional summary of the best hits. Superimposed structures can be examined through an interactive and informative visualization tool. iSARST provides the first batch mode structural comparison web service for both co-linear homologs and circular permutants. It can serve as a rapid annotation system for functionally unknown or hypothetical proteins, which are increasing rapidly in this post-genomics era. The server can be accessed at http://sarst.life.nthu.edu.tw/iSARST/.


Assuntos
Software , Homologia Estrutural de Proteína , Bases de Dados de Proteínas , Internet , Integração de Sistemas , Interface Usuário-Computador
9.
Nucleic Acids Res ; 37(Database issue): D328-32, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18842637

RESUMO

Circular permutation (CP) in a protein can be considered as if its sequence were circularized followed by a creation of termini at a new location. Since the first observation of CP in 1979, a substantial number of studies have concluded that circular permutants (CPs) usually retain native structures and functions, sometimes with increased stability or functional diversity. Although this interesting property has made CP useful in many protein engineering and folding researches, large-scale collections of CP-related information were not available until this study. Here we describe CPDB, the first CP DataBase. The organizational principle of CPDB is a hierarchical categorization in which pairs of circular permutants are grouped into CP clusters, which are further grouped into folds and in turn classes. Additions to CPDB include a useful set of tools and resources for the identification, characterization, comparison and visualization of CP. Besides, several viable CP site prediction methods are implemented and assessed in CPDB. This database can be useful in protein folding and evolution studies, the discovery of novel protein structural and functional relationships, and facilitating the production of new CPs with unique biotechnical or industrial interests. The CPDB database can be accessed at http://sarst.life.nthu.edu.tw/cpdb.


Assuntos
Bases de Dados de Proteínas , Proteínas/química , Gráficos por Computador , Internet , Dobramento de Proteína , Homologia Estrutural de Proteína , Interface Usuário-Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...