Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Ginseng Res ; 48(3): 310-322, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38707648

RESUMO

Background: Osteosarcopenia is a common condition characterized by the loss of both bone and muscle mass, which can lead to an increased risk of fractures and disability in older adults. The study aimed to elucidate the response of various mouse strains to treatment with Rg3, one of the leading ginsenosides, on musculoskeletal traits and immune function, and their correlation. Methods: Six Collaborative Cross (CC) founder strains induced muscle atrophy and bone loss with dexamethasone (15 mg/kg) treatment for 1 month, and half of the mice for each strain were orally administered Rg3 (20 mg/kg). Different responses were observed depending on genetic background and Rg3 treatment. Results: Rg3 significantly increased grip strength, running performance, and expression of muscle and bone health-related genes in a two-way analysis of variance considering the genetic backgrounds and Rg3 treatment. Significant improvements in grip strength, running performance, bone area, and muscle mass, and the increased gene expression were observed in specific strains of PWK/PhJ. For traits related to muscle, bone, and immune functions, significant correlations between traits were confirmed following Rg3 administration compared with control mice. The phenotyping analysis was compiled into a public web resource called Rg3-OsteoSarco. Conclusion: This highlights the complex interplay between genetic determinants, pathogenesis of muscle atrophy and bone loss, and phytochemical bioactivity and the need to move away from single inbred mouse models to improve their translatability to genetically diverse humans. Rg3-OsteoSarco highlights the use of CC founder strains as a valuable tool in the field of personalized nutrition.

2.
Nutrients ; 15(15)2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37571230

RESUMO

Chlorella vulgaris (C. vulgaris) is unicellular green algae consumed worldwide as a functional food. The immune stimulatory function of C. vulgaris is known; however, no study has elucidated its immune regulatory potential and associated microbiome modulation. In the current study, we aimed to validate the immune regulatory role of C. vulgaris mediated through two mechanisms. Initially, we assessed its ability to promote the expansion of the regulatory T cell (Treg) population. Subsequently, we investigated its impact on gut microbiota composition and associated metabolites. The supplementation of C. vulgaris altered the gut microbiota composition, accompanied by increased short-chain fatty acid (SCFAs) production in mice at homeostasis. We later used C. vulgaris in the treatment of a DSS-induced colitis model. C. vulgaris intervention alleviated the pathological symptom of colitis in mice, with a corresponding increase in Treg levels. As C. vulgaris is a safe and widely used food supplement, it can be a feasible strategy to instigate cross-talk between the host immune system and the intestinal flora for the effective management of inflammatory bowel disease (IBD).


Assuntos
Chlorella vulgaris , Colite , Microbioma Gastrointestinal , Microbiota , Animais , Camundongos , Linfócitos T Reguladores , Colite/induzido quimicamente , Colite/terapia , Sulfato de Dextrana/efeitos adversos , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Colo/metabolismo
3.
FEMS Microbiol Rev ; 47(4)2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37541953

RESUMO

Probiotics, live microorganisms that confer health benefits when consumed in adequate amounts, have gained significant attention for their potential therapeutic applications. The beneficial effects of probiotics are believed to stem from their ability to enhance intestinal barrier function, inhibit pathogens, increase beneficial gut microbes, and modulate immune responses. However, clinical studies investigating the effectiveness of probiotics have yielded conflicting results, potentially due to the wide variety of probiotic species and strains used, the challenges in controlling the desired number of live microorganisms, and the complex interactions between bioactive substances within probiotics. Bacterial cell wall components, known as effector molecules, play a crucial role in mediating the interaction between probiotics and host receptors, leading to the activation of signaling pathways that contribute to the health-promoting effects. Previous reviews have extensively covered different probiotic effector molecules, highlighting their impact on immune homeostasis. Understanding how each probiotic component modulates immune activity at the molecular level may enable the prediction of immunological outcomes in future clinical studies. In this review, we present a comprehensive overview of the structural and immunological features of probiotic effector molecules, focusing primarily on Lactobacillus and Bifidobacterium. We also discuss current gaps and limitations in the field and propose directions for future research to enhance our understanding of probiotic-mediated immunomodulation.


Assuntos
Probióticos , Probióticos/uso terapêutico , Lactobacillus , Bactérias , Transdução de Sinais , Bifidobacterium/metabolismo
4.
Immune Netw ; 23(1): e6, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36911800

RESUMO

Intestinal microorganisms interact with various immune cells and are involved in gut homeostasis and immune regulation. Although many studies have discussed the roles of the microorganisms themselves, interest in the effector function of their metabolites is increasing. The metabolic processes of these molecules provide important clues to the existence and function of gut microbes. The interrelationship between metabolites and T lymphocytes in particular plays a significant role in adaptive immune functions. Our current review focuses on 3 groups of metabolites: short-chain fatty acids, bile acids metabolites, and polyamines. We collated the findings of several studies on the transformation and production of these metabolites by gut microbes and explained their immunological roles. Specifically, we summarized the reports on changes in mucosal immune homeostasis represented by the Tregs and Th17 cells balance. The relationship between specific metabolites and diseases was also analyzed through latest studies. Thus, this review highlights microbial metabolites as the hidden treasure having potential diagnostic markers and therapeutic targets through a comprehensive understanding of the gut-immune interaction.

5.
J Sci Food Agric ; 103(3): 1273-1282, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36088620

RESUMO

BACKGROUND: The gut microbiota (GM) plays an important role in human health and is being investigated as a possible target for new therapies. Although there are many studies showing that emodin can improve host health, emodin-GM studies are scarce. Here, the effects of emodin on the GM were investigated in vitro and in vivo. RESULTS: In vitro single bacteria cultivation showed that emodin stimulated the growth of beneficial bacteria Akkermansia, Clostridium, Roseburia, and Ruminococcus but inhibited major gut enterotypes (Bacteroides and Prevotella). Microbial community analysis from a synthetic gut microbiome model through co-culture indicated the consistent GM change by emodin. Interestingly, emodin stimulated Clostridium and Ruminococcus (which are related to Roseburia and Faecalibacterium) in a mice experiment and induced anti-inflammatory immune cells, which may correlate with its impact on specific gut bacteria. CONCLUSION: Emodin (i) showed similar GM changes in monoculture, co-culture, and in an in vivo mice experiment and (ii) simulated regulatory T-cell immune responses in vivo. This suggest that emodin may be used to modulate the GM and improve health. © 2022 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Emodina , Microbioma Gastrointestinal , Microbiota , Humanos , Animais , Camundongos , Emodina/farmacologia , Alimentos , Bactérias/genética , Clostridiales
6.
Pharmaceuticals (Basel) ; 14(3)2021 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-33800441

RESUMO

Schisandrol A possesses pharmacological properties and is used to treat various diseases; however, its effects on osteoarthritis (OA) progression remain unclear. Here, we investigated Schisandrol A as a potential therapeutic agent for OA. In vitro, Schisandrol A effects were confirmed based on the levels of expression of catabolic factors (MMPs, ADAMTS5, and Cox2) induced by IL-1ß or Schisandrol A treatment in chondrocytes. In vivo, experimental OA in mice was induced using a destabilized medial meniscus (DMM) surgical model or oral gavage of Schisandrol A in a dose-dependent manner, and demonstrated using histological analysis. In vitro and in vivo analyses demonstrated that Schisandrol A inhibition attenuated osteoarthritic cartilage destruction via the regulation of Mmp3, Mmp13, Adamts5, and Cox2 expression. In the NF-κB signaling pathway, Schisandrol A suppressed the degradation of IκB and the phosphorylation of p65 induced by IL-1ß. Overall, and Schisandrol A reduced the expression of catabolic factors by blocking NF-κB signaling and prevented cartilage destruction. Therefore, Schisandrol A attenuated OA progression, and can be used to develop novel OA drug therapies.

7.
Pharmaceuticals (Basel) ; 14(3)2021 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-33802005

RESUMO

Osteoarthritis (OA) is an age-related degenerative disease that causes cartilage dysfunction and inflammation. Obtusifolin, an anthraquinone extracted from Senna obtusifolia (L.) H.S.Irwin & Barneby seeds, has anti-inflammatory functions; it could be used as a drug component to relieve OA symptoms. In this study, we investigated the effects of obtusifolin on OA inflammation. In vitro, interleukin (IL)-1ß (1 ng/mL)-treated mouse chondrocytes were co-treated with obtusifolin at different concentrations. The expression of matrix metalloproteinase (Mmp) 3, Mmp13, cyclooxygenase 2 (Cox2), and signaling proteins was measured by polymerase chain reaction and Western blotting; collagenase activity and the PGE2 level were also determined. In vivo, OA-induced C57BL/6 mice were administered obtusifolin, and their cartilage was stained with Safranin O to observe damage. Obtusifolin inhibited Mmp3, Mmp13, and Cox2 expression to levels similar to or more than those after treatment with celecoxib. Additionally, obtusifolin decreased collagenase activity and the PGE2 level. Furthermore, obtusifolin regulated OA via the NF-κB signaling pathway. In surgically induced OA mouse models, the cartilage destruction decreased when obtusifolin was administered orally. Taken together, our results show that obtusifolin effectively reduces cartilage damage via the regulation of MMPs and Cox2 expression. Hence, we suggest that obtusifolin could be a component of another OA symptom reliever.

9.
Front Oncol ; 10: 642, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32477936

RESUMO

ETS1 has shown dichotomous roles as an oncogene and a tumor suppressor gene in diverse cancers, but its functionality in breast cancer tumorigenesis still remains unclear. We utilized the Cancer Genome Atlas (TCGA) database to analyze comprehensive functions of ETS1 in human breast cancer (BRCA) patients by investigating its expression patterns and methylation status in relation to clinical prognosis. ETS1 expression was significantly diminished by hyper-methylation of the ETS1 promoter region in specimens from BRCA patients compared to a healthy control group. Moreover, ETS1 high BRCA patients showed better prognosis and longer survival compared to ETS1 low BRCA patients. Consistent with clinical evidence, comparative transcriptome analysis combined with CRISPR/Cas9 or shRNA based perturbation of ETS1 expression revealed direct as well as indirect mechanisms of ETS1 that hinder tumorigenesis of BRCA cells. Taken together, our study enlightens a novel function of ETS1 as a tumor suppressor in breast cancer cells.

10.
Sci Rep ; 10(1): 5603, 2020 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-32221370

RESUMO

3'-Sialyllactose (3'-SL), a natural prebiotic, maintains immune homeostasis and exerts anti-inflammatory and anti-arthritic effects. Although regulatory T cells (Tregs) prevent excessive inflammation and maintain immune tolerance, the effect of 3'-SL on Treg regulation is unclear. This study aimed to investigate the effect of 3'-SL on Treg responses in atopic dermatitis (AD) pathogenesis. Oral administration of 3'-SL reduced AD-like symptoms such as ear, epidermal, and dermal thickness in repeated topical application of house dust mites (HDM) and 2,4-dinitrochlorobenzene (DNCB). 3'-SL inhibited IgE, IL-1ß, IL-6, and TNF-α secretion and markedly downregulated AD-related cytokines including IL-4, IL-5, IL-6, IL-13, IL-17, IFN-γ, TNF-α, and Tslp through regulation of NF-κB in ear tissue. Additionally, in vitro assessment of Treg differentiation revealed that 3'-SL directly induced TGF-ß-mediated Treg differentiation. Furthermore, 3'-SL administration also ameliorated sensitization and elicitation of AD pathogenesis by suppressing mast cell infiltration and production of IgE and pro-inflammatory cytokines in mouse serum by mediating the Treg response. Furthermore, Bifidobacterium population was also increased by 3'-SL administration as prebiotics. Our data collectively show that 3'-SL has therapeutic effects against AD progression by inducing Treg differentiation, downregulating AD-related cytokines, and increasing the Bifidobacterium population.


Assuntos
Dermatite Atópica/prevenção & controle , Oligossacarídeos/uso terapêutico , Prebióticos , Pele/efeitos dos fármacos , Linfócitos T Reguladores/efeitos dos fármacos , Animais , Citocinas/metabolismo , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA