Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neurobiol Dis ; 96: 171-185, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27569580

RESUMO

Sex differences are a well-known phenomenon in Alzheimer's disease (AD), with women having a higher risk for AD than men. Many AD mouse models display a similar sex-dependent pattern, with females showing earlier cognitive deficits and more severe neuropathology than males. However, whether those differences are relevant to human disease is unclear. Here we show that in AD mouse models that overexpress amyloid precursor protein (APP) under control of the prion protein promoter (PrP), female transgenic mice have higher APP expression than males, complicating interpretations of the role of sex-related factors in such models. By contrast, in a tTa:APPsi model, in which APP expression is driven by the tetracycline transactivator (tTa) from the CaMKIIα promoter, there are no sex-related differences in expression or processing of APP. In addition, the levels of Aß dimers and tetramers, as well as Aß peptide accumulation, are similar between sexes. Behavioral testing demonstrated that both male and female tTa:APPsi mice develop age-dependent deficits in spatial recognition memory and conditional freezing to context. These cognitive deficits were accompanied by habituation-associated hyperlocomotion and startle hyper-reactivity. Significant sex-related dimorphisms were observed, due to females showing earlier onsets of the deficits in conditioned freezing and hyperlocomotion. In addition, tTa:APPsi males but not females demonstrated a lack of novelty-induced activation. Both males and females showed atrophy of the dentate gyrus (DG) of the dorsal hippocampus, associated with widening of the pyramidal layer of the CA1 area in both sexes. Ventral DG was preserved. Sex-related differences were limited to the DG, with females showing more advanced degeneration than males. Collectively, our data show that the tTa:APPsi model is characterized by a lack of sex-related differences in APP expression, making this model useful in deciphering the mechanisms of sex differences in AD pathogenesis. Sex-related dimorphisms observed in this model under conditions of equal APP expression between sexes suggest a higher sensitivity of females to the effects of APP and/or Aß production.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Giro Denteado/patologia , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Doença de Alzheimer/fisiopatologia , Precursor de Proteína beta-Amiloide/genética , Animais , Atrofia/etiologia , Atrofia/patologia , Condicionamento Psicológico/fisiologia , Modelos Animais de Doenças , Medo/fisiologia , Feminino , Humanos , Locomoção/genética , Masculino , Camundongos , Camundongos Transgênicos , Modelos Biológicos , Mutação/genética , Presenilina-1/genética , Reconhecimento Psicológico/fisiologia , Fatores Sexuais , Tetraciclina/farmacologia
2.
PLoS One ; 10(6): e0129618, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26086915

RESUMO

In Alzheimer's disease (AD), one of the early responses to Aß amyloidosis is recruitment of microglia to areas of new plaque. Microglial receptors such as cannabinoid receptor 2 (CB2) might be a suitable target for development of PET radiotracers that could serve as imaging biomarkers of Aß-induced neuroinflammation. Mouse models of amyloidosis (J20APPswe/ind and APPswe/PS1ΔE9) were used to investigate the cellular distribution of CB2 receptors. Specificity of CB2 antibody (H60) was confirmed using J20APPswe/ind mice lacking CB2 receptors. APPswe/PS1ΔE9 mice were used in small animal PET with a CB2-targeting radiotracer, [11C]A836339. These studies revealed increased binding of [11C]A836339 in amyloid-bearing mice. Specificity of the PET signal was confirmed in a blockade study with a specific CB2 antagonist, AM630. Confocal microscopy revealed that CB2-receptor immunoreactivity was associated with astroglial (GFAP) and, predominantly, microglial (CD68) markers. CB2 receptors were observed, in particular, in microglial processes forming engulfment synapses with Aß plaques. In contrast to glial cells, neuron (NeuN)-derived CB2 signal was equal between amyloid-bearing and control mice. The pattern of neuronal CB2 staining in amyloid-bearing mice was similar to that in human cases of AD. The data collected in this study indicate that Aß amyloidosis without concomitant tau pathology is sufficient to activate CB2 receptors that are suitable as an imaging biomarker of neuroinflammation. The main source of enhanced CB2 PET binding in amyloid-bearing mice is increased CB2 immunoreactivity in activated microglia. The presence of CB2 immunoreactivity in neurons does not likely contribute to the enhanced CB2 PET signal in amyloid-bearing mice due to a lack of significant neuronal loss in this model. However, significant loss of neurons as seen at late stages of AD might decrease the CB2 PET signal due to loss of neuronally-derived CB2. Thus this study in mouse models of AD indicates that a CB2-specific radiotracer can be used as a biomarker of neuroinflammation in the early preclinical stages of AD, when no significant neuronal loss has yet developed.


Assuntos
Doença de Alzheimer/patologia , Precursor de Proteína beta-Amiloide/análise , Amiloidose/patologia , Inflamação/patologia , Neurônios/patologia , Receptor CB2 de Canabinoide/análise , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/imunologia , Precursor de Proteína beta-Amiloide/imunologia , Amiloidose/diagnóstico por imagem , Amiloidose/imunologia , Animais , Biomarcadores/análise , Modelos Animais de Doenças , Feminino , Humanos , Imuno-Histoquímica , Inflamação/diagnóstico por imagem , Inflamação/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microglia/diagnóstico por imagem , Microglia/imunologia , Microglia/patologia , Neurônios/diagnóstico por imagem , Neurônios/imunologia , Tomografia por Emissão de Pósitrons , Receptor CB2 de Canabinoide/imunologia
3.
J Neurosci ; 33(9): 3765-79, 2013 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-23447589

RESUMO

Transgenic mice that express mutant amyloid precursor protein (APPsi) using tet-Off vector systems provide an alternative model for assessing short- and long-term effects of Aß-targeting therapies on phenotypes related to the deposition of Alzheimer-type amyloid. Here we use such a model, termed APPsi:tTA, to determine what phenotypes persist in mice with high amyloid burden after new production of APP/Aß has been suppressed. We find that 12- to 13-month-old APPsi:tTA mice are impaired in cognitive tasks that assess short- and long-term memories. Acutely suppressing new APPsi/Aß production produced highly significant improvements in performing short-term spatial memory tasks, which upon continued suppression translated to superior performance in more demanding tasks that assess long-term spatial memory and working memory. Deficits in episodic-like memory and cognitive flexibility, however, were more persistent. Arresting mutant APPsi production caused a rapid decline in the brain levels of soluble APP ectodomains, full-length APP, and APP C-terminal fragments. As expected, amyloid deposits persisted after new APP/Aß production was inhibited, whereas, unexpectedly, we detected persistent pools of solubilizable, relatively mobile, Aß42. Additionally, we observed persistent levels of Aß-immunoreactive entities that were of a size consistent with SDS-resistant oligomeric assemblies. Thus, in this model with significant amyloid pathology, a rapid amelioration of cognitive deficits was observed despite persistent levels of oligomeric Aß assemblies and low, but detectable solubilizable Aß42 peptides. These findings implicate complex relationships between accumulating Aß and activities of APP, soluble APP ectodomains, and/or APP C-terminal fragments in mediating cognitive deficits in this model of amyloidosis.


Assuntos
Doença de Alzheimer/complicações , Doença de Alzheimer/patologia , Amiloidose/complicações , Amiloidose/patologia , Encéfalo/metabolismo , Transtornos Cognitivos/etiologia , Doença de Alzheimer/genética , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Amiloidose/dietoterapia , Amiloidose/genética , Análise de Variância , Animais , Encéfalo/patologia , Encéfalo/ultraestrutura , Transtornos Cognitivos/dietoterapia , Transtornos Cognitivos/patologia , Discriminação Psicológica/fisiologia , Modelos Animais de Doenças , Doxiciclina/administração & dosagem , Ensaio de Imunoadsorção Enzimática , Humanos , Aprendizagem em Labirinto/efeitos dos fármacos , Aprendizagem em Labirinto/fisiologia , Memória de Curto Prazo/efeitos dos fármacos , Memória de Curto Prazo/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mutação/genética , Fragmentos de Peptídeos/metabolismo , Fenótipo , Placa Amiloide/dietoterapia , Placa Amiloide/metabolismo , Placa Amiloide/patologia , Tempo de Reação/efeitos dos fármacos , Tempo de Reação/genética , Reconhecimento Psicológico/efeitos dos fármacos , Percepção Espacial , Frações Subcelulares/metabolismo , Frações Subcelulares/patologia , Fatores de Tempo
4.
Cell ; 145(5): 758-72, 2011 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-21565394

RESUMO

We have created a mouse genetic model that mimics a human mutation of Shank3 that deletes the C terminus and is associated with autism. Expressed as a single copy [Shank3(+/ΔC) mice], Shank3ΔC protein interacts with the wild-type (WT) gene product and results in >90% reduction of Shank3 at synapses. This "gain-of-function" phenotype is linked to increased polyubiquitination of WT Shank3 and its redistribution into proteasomes. Similarly, the NR1 subunit of the NMDA receptor is reduced at synapses with increased polyubiquitination. Assays of postsynaptic density proteins, spine morphology, and synapse number are unchanged in Shank3(+/ΔC) mice, but the amplitude of NMDAR responses is reduced together with reduced NMDAR-dependent LTP and LTD. Reciprocally, mGluR-dependent LTD is markedly enhanced. Shank3(+/ΔC) mice show behavioral deficits suggestive of autism and reduced NMDA receptor function. These studies reveal a mechanism distinct from haploinsufficiency by which mutations of Shank3 can evoke an autism-like disorder.


Assuntos
Transtorno Autístico/genética , Proteínas de Transporte/metabolismo , Modelos Animais de Doenças , Receptores de N-Metil-D-Aspartato/metabolismo , Animais , Transtorno Autístico/metabolismo , Transtorno Autístico/fisiopatologia , Proteínas de Transporte/genética , Hipocampo/metabolismo , Humanos , Relações Interpessoais , Potenciação de Longa Duração , Depressão Sináptica de Longo Prazo , Camundongos , Proteínas dos Microfilamentos , Proteínas do Tecido Nervoso , Receptores de Glutamato Metabotrópico/metabolismo , Sinapses/metabolismo , Ubiquitinação
5.
J Neuropathol Exp Neurol ; 70(5): 399-416, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21487304

RESUMO

The increased use of explosives in recent wars has increased the number of veterans with blast injuries. Of particular interest is blast injury to the brain, and a key question is whether the primary overpressure wave of the blast is injurious or whether brain injury from blast is mostly due to secondary and tertiary effects. Using a shock tube generating shock waves comparable to open-field blast waves, we explored the effects of blast on parenchymatous organs of mice with emphasis on the brain. The main injuries in nonbrain organs were hemorrhages in the lung interstitium and alveolar spaces and hemorrhagic infarcts in liver, spleen, and kidney. Neuropathological and behavioral outcomes of blast were studied at mild blast intensity, that is, 68 ± 8 kPag (9.9 ± 1.2 psig) static pressure, 103 kPag (14.9 psig) total pressure and 183 ± 14 kPag (26.5 ± 2.1 psig) membrane rupture pressure. Under these conditions, we observed multifocal axonal injury, primarily in the cerebellum/brainstem, the corticospinal system, and the optic tract. We also found prolonged behavioral and motor abnormalities, including deficits in social recognition and spatial memory and in motor coordination. Shielding of the torso ameliorated axonal injury and behavioral deficits. These findings indicate that long CNS axon tracts are particularly vulnerable to the effects of blast, even at mild intensities that match the exposure of most veterans in recent wars. Prevention of some of these neurological effects by torso shielding may generate new ideas as to how to protect military and civilian populations in blast scenarios.


Assuntos
Traumatismos por Explosões/patologia , Lesões Encefálicas/patologia , Encéfalo/patologia , Degeneração Neural/patologia , Neurônios/patologia , Animais , Axônios/patologia , Traumatismos por Explosões/fisiopatologia , Encéfalo/fisiopatologia , Lesões Encefálicas/fisiopatologia , Modelos Animais de Doenças , Imuno-Histoquímica , Masculino , Memória/fisiologia , Camundongos , Atividade Motora/fisiologia , Degeneração Neural/fisiopatologia , Coloração pela Prata
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...