Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Curr Issues Mol Biol ; 44(1): 309-328, 2022 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-35723402

RESUMO

Mastitis, inflammation of the mammary gland, is the most prevalent disease in dairy cattle that has a potential impact on profitability and animal welfare. Specifically designed multi-omics studies can be used to prioritize candidate genes and identify biomarkers and the molecular mechanisms underlying mastitis in dairy cattle. Hence, the present study aimed to explore the genetic basis of bovine mastitis by integrating microarray and RNA-Seq data containing healthy and mastitic samples in comparative transcriptome analysis with the results of published genome-wide association studies (GWAS) using a literature mining approach. The integration of different information sources resulted in the identification of 33 common and relevant genes associated with bovine mastitis. Among these, seven genes-CXCR1, HCK, IL1RN, MMP9, S100A9, GRO1, and SOCS3-were identified as the hub genes (highly connected genes) for mastitis susceptibility and resistance, and were subjected to protein-protein interaction (PPI) network and gene regulatory network construction. Gene ontology annotation and enrichment analysis revealed 23, 7, and 4 GO terms related to mastitis in the biological process, molecular function, and cellular component categories, respectively. Moreover, the main metabolic-signalling pathways responsible for the regulation of immune or inflammatory responses were significantly enriched in cytokine-cytokine-receptor interaction, the IL-17 signaling pathway, viral protein interaction with cytokines and cytokine receptors, and the chemokine signaling pathway. Consequently, the identification of these genes, pathways, and their respective functions could contribute to a better understanding of the genetics and mechanisms regulating mastitis and can be considered a starting point for future studies on bovine mastitis.

2.
Front Genet ; 12: 752424, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34899840

RESUMO

The importance of meat and carcass quality is growing in beef cattle production to meet both producer and consumer demands. Primal cut yields, which reflect the body compositions of carcass, could determine the carcass grade and, consequently, command premium prices. Despite its importance, there have been few genome-wide association studies on these traits. This study aimed to identify genomic regions and putative candidate genes related to 10 primal cut traits, including tenderloin, sirloin, striploin, chuck, brisket, top round, bottom round, shank, flank, and rib in Hanwoo cattle using a single-step Bayesian regression (ssBR) approach. After genomic data quality control, 43,987 SNPs from 3,745 genotyped animals were available, of which 3,467 had phenotypic records for the analyzed traits. A total of 16 significant genomic regions (1-Mb window) were identified, of which five large-effect quantitative trait loci (QTLs) located on chromosomes 6 at 38-39 Mb, 11 at 21-22 Mb, 14 at 6-7 Mb and 26-27 Mb, and 19 at 26-27 Mb were associated with more than one trait, while the remaining 11 QTLs were trait-specific. These significant regions were harbored by 154 genes, among which TOX, FAM184B, SPP1, IBSP, PKD2, SDCBP, PIGY, LCORL, NCAPG, and ABCG2 were noteworthy. Enrichment analysis revealed biological processes and functional terms involved in growth and lipid metabolism, such as growth (GO:0040007), muscle structure development (GO:0061061), skeletal system development (GO:0001501), animal organ development (GO:0048513), lipid metabolic process (GO:0006629), response to lipid (GO:0033993), metabolic pathways (bta01100), focal adhesion (bta04510), ECM-receptor interaction (bta04512), fat digestion and absorption (bta04975), and Rap1 signaling pathway (bta04015) being the most significant for the carcass primal cut traits. Thus, identification of quantitative trait loci regions and plausible candidate genes will aid in a better understanding of the genetic and biological mechanisms regulating carcass primal cut yields.

3.
Genes (Basel) ; 12(12)2021 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-34946834

RESUMO

There is a growing interest worldwide in genetically selecting high-value cut carcass weights, which allows for increased profitability in the beef cattle industry. Primal cut yields have been proposed as a potential indicator of cutability and overall carcass merit, and it is worthwhile to assess the prediction accuracies of genomic selection for these traits. This study was performed to compare the prediction accuracy obtained from a conventional pedigree-based BLUP (PBLUP) and a single-step genomic BLUP (ssGBLUP) method for 10 primal cut traits-bottom round, brisket, chuck, flank, rib, shank, sirloin, striploin, tenderloin, and top round-in Hanwoo cattle with the estimators of the linear regression method. The dataset comprised 3467 phenotypic observations for the studied traits and 3745 genotyped individuals with 43,987 single-nucleotide polymorphisms. In the partial dataset, the accuracies ranged from 0.22 to 0.30 and from 0.37 to 0.54 as evaluated using the PBLUP and ssGBLUP models, respectively. The accuracies of PBLUP and ssGBLUP with the whole dataset varied from 0.45 to 0.75 (average 0.62) and from 0.52 to 0.83 (average 0.71), respectively. The results demonstrate that ssGBLUP performed better than PBLUP averaged over the 10 traits, in terms of prediction accuracy, regardless of considering a partial or whole dataset. Moreover, ssGBLUP generally showed less biased prediction and a value of dispersion closer to 1 than PBLUP across the studied traits. Thus, the ssGBLUP seems to be more suitable for improving the accuracy of predictions for primal cut yields, which can be considered a starting point in future genomic evaluation for these traits in Hanwoo breeding practice.


Assuntos
Genômica/métodos , Animais , Bovinos , Genoma/genética , Genótipo , Modelos Genéticos , Linhagem , Fenótipo , Característica Quantitativa Herdável
4.
Animals (Basel) ; 11(11)2021 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-34827834

RESUMO

This study was carried out to estimate the variance components, heritability, and genetic correlations between the carcass traits and primal cut yields in Hanwoo cattle. Carcass traits comprising 5622 records included back fat thickness (BFT), carcass weight (CW), eye muscle area (EMA), and marbling score (MS). The 10 primal cut yields from 3467 Hanwoo steers included the tenderloin (TLN), sirloin (SLN), striploin (STLN), chuck (CHK), brisket (BSK), top round (TRD), bottom round (BRD), rib (RB), shank (SK), and flank (FK). In addition, three composite traits were formed by combining primal cut yields as novel traits according to consumer preferences and market price: high-value cuts (HVC), medium-value cuts (MVC), and low-value cuts (LVC). Heritability estimates for the interest of traits were moderate to high, ranging from 0.21 ± 0.04 for CHK to 0.59 ± 0.05 for MS. Except genetic correlations between RB and other primal cut traits, favorable and moderate to high correlations were observed among the yields of primal cut that ranged from 0.38 ± 0.14 (CHK and FK) to 0.93 ± 0.01 (TRD and BRD). Moreover, the estimated genetic correlations of CW and EMA with primal cut yields and three composite traits were positive and moderate to strong, except for BFT, which was negative. These results indicate that genetic progress can be achieved for all traits, and selection to increase the yields of primal cuts can lead to considerable profitability in the Hanwoo beef industry.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...