Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Nutr Food Res ; 68(3): e2300136, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38059783

RESUMO

SCOPE: Cannabidiol (CBD), the most abundant non-psychoactive constituent of the plant Cannabis sativa, is known to possess immune modulatory properties. This study investigates the effects of CBD on mast cell degranulation in human and mouse primary mast cells and passive cutaneous anaphylaxis in mice. METHODS AND RESULTS: Mouse bone marrow-derived mast cells and human cord-blood derived mast cells are generated. CBD suppressed antigen-stimulated mast cell degranulation in a concentration-dependent manner. Mechanistically, CBD inhibited both the phosphorylation of FcεRI downstream signaling molecules and calcium mobilization in mast cells, while exerting no effect on FcεRI expression and IgE binding to FcεRI. These suppressive effects are preserved in the mast cells that are depleted of type 1 (CB1) and type 2 (CB2) cannabinoid receptors, as well as in the presence of CB1 agonist, CB2 agonist, CB1 inverse agonist, and CB2 inverse agonist. CBD also inhibited the development of mast cells in a long-term culture. The intraperitoneal administration of CBD suppressed passive cutaneous anaphylaxis in mice as evidenced by a reduction in ear swelling and decrease in the number of degranulated mast cells. CONCLUSION: Based on these results, the administration of CBD is a new therapeutic intervention in mast cell-associated anaphylactic diseases.


Assuntos
Anafilaxia , Canabidiol , Camundongos , Humanos , Animais , Anafilaxia/tratamento farmacológico , Mastócitos , Canabidiol/farmacologia , Canabidiol/metabolismo , Degranulação Celular , Agonismo Inverso de Drogas , Imunoglobulina E/metabolismo , Receptores de IgE/metabolismo
2.
Biomed Opt Express ; 14(12): 6127-6137, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38420329

RESUMO

The isolation of white blood cells (WBCs) from whole blood constitutes a pivotal process for immunological studies, diagnosis of hematologic disorders, and the facilitation of immunotherapy. Despite the ubiquity of density gradient centrifugation in WBC isolation, its influence on WBC functionality remains inadequately understood. This research employs holotomography to explore the effects of two distinct WBC separation techniques, namely conventional centrifugation and microfluidic separation, on the functionality of the isolated cells. We utilize three-dimensional refractive index distribution and time-lapse dynamics to analyze individual WBCs in-depth, focusing on their morphology, motility, and phagocytic capabilities. Our observations highlight that centrifugal processes negatively impact WBC motility and phagocytic capacity, whereas microfluidic separation yields a more favorable outcome in preserving WBC functionality. These findings emphasize the potential of microfluidic separation techniques as a viable alternative to traditional centrifugation for WBC isolation, potentially enabling more precise analyses in immunology research and improving the accuracy of hematologic disorder diagnoses.

3.
Small ; 18(40): e2202912, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36058645

RESUMO

Development of efficient surface passivation methods for semiconductor devices is crucial to counter the degradation in their electrical performance owing to scattering or trapping of carriers in the channels induced by molecular adsorption from the ambient environment. However, conventional dielectric deposition involves the formation of additional interfacial defects associated with broken covalent bonds, resulting in accidental electrostatic doping or enhanced hysteretic behavior. In this study, centimeter-scaled van der Waals passivation of transition metal dichalcogenides (TMDCs) is demonstrated by stacking hydrocarbon (HC) dielectrics onto MoSe2 field-effect transistors (FETs), thereby enhancing the electric performance and stability of the device, accompanied with the suppression of chemical disorder at the HC/TMDCs interface. The stacking of HC onto MoSe2 FETs enhances the carrier mobility of MoSe2 FET by over 50% at the n-branch, and a significant decrease in hysteresis, owing to the screening of molecular adsorption. The electron mobility and hysteresis of the HC/MoSe2 FETs are verified to be nearly intact compared to those of the fabricated HC/MoSe2 FETs after exposure to ambient environment for 3 months. Consequently, the proposed design can act as a model for developing advanced nanoelectronics applications based on layered materials for mass production.

4.
Toxics ; 10(3)2022 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-35324733

RESUMO

1,2-Benzisothiazolin-3-one (BIT) is a commonly used organic biocide containing an isothiazolone ring. However, it may have adverse effects on human health and its risk needs to be properly evaluated. Dermal exposure is the main route of BIT exposure, and co-exposed substances may affect its absorption. The dermal permeation profile of BIT has not been well-studied. This study aimed to investigate the dermal permeation profiles of BIT with or without cosmetic use. Dermal permeation profiles of BIT were investigated after infinite- (100 µg/cm2), or a finite-dose (10 µg/cm2) application with or without cosmetics using a minipig skin and Strat-M®, an artificial membrane. A cream, lotion, and essence (namely, face serum) were pre-treated as representative cosmetics on minipig skin for 30 min, with BIT treatment afterward. After the treatment, BIT left on the skin surface was collected by cotton swabbing, BIT in the stratum corneum, by sequential tape stripping, and BIT retained in the remaining skin was extracted after cutting the skin into pieces before LC-MS/MS analysis. When an infinite dose was applied, permeation coefficients (Kp, cm/h) for minipig skin and Strat-M® were 2.63 × 10-3 and 19.94 × 10-3, respectively, reflecting that skin permeation was seven to eight times higher in Strat-M® than in the minipig skin. BIT, in the presence of cosmetics, rapidly permeated the skin, while the amount in the stratum corneum and skin deposit was reduced. We performed a risk assessment of dermally applied BIT in the absence or presence of cosmetics by calculating the skin absorption rate at 10 h based on the toxicological data from several references. The risk level was higher in the presence of essence as compared to lotion, which was higher than cream, which was higher than the control (non-treated). However, all of the margins of safety values obtained were greater than 100, suggesting that BIT is safe for use in dermally exposed consumer products. We believe that this research contributes to a greater understanding of the risk assessment of isothiazolinone biocides.

5.
Biomed Opt Express ; 13(12): 6404-6415, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36589574

RESUMO

Optical diffraction tomography (ODT) enables the three-dimensional (3D) refractive index (RI) reconstruction. However, when the RI difference between a sample and a medium increases, the effects of light scattering become significant, preventing the acquisition of high-quality and accurate RI reconstructions. Herein, we present a method for high-fidelity ODT by introducing non-toxic RI matching media. Optimally reducing the RI contrast enhances the fidelity and accuracy of 3D RI reconstruction, enabling visualization of the morphology and intra-organization of live biological samples without producing toxic effects. We validate our method using various biological organisms, including C. albicans and C. elegans.

6.
Bioinformatics ; 38(2): 351-356, 2022 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-34623374

RESUMO

MOTIVATION: Over the past decades, vast amounts of genome sequencing data have been produced, requiring an enormous level of storage capacity. The time and resources needed to store and transfer such data cause bottlenecks in genome sequencing analysis. To resolve this issue, various compression techniques have been proposed to reduce the size of original FASTQ raw sequencing data, but these remain suboptimal. Long-read sequencing has become dominant in genomics, whereas most existing compression methods focus on short-read sequencing only. RESULTS: We designed a compression algorithm based on read reordering using a novel scoring model for reducing FASTQ file size with no information loss. We integrated all data processing steps into a software package called FastqCLS and provided it as a Docker image for ease of installation and execution to help users easily install and run. We compared our method with existing major FASTQ compression tools using benchmark datasets. We also included new long-read sequencing data in this validation. As a result, FastqCLS outperformed in terms of compression ratios for storing long-read sequencing data. AVAILABILITY AND IMPLEMENTATION: FastqCLS can be downloaded from https://github.com/krlucete/FastqCLS. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Compressão de Dados , Software , Análise de Sequência de DNA/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Algoritmos , Compressão de Dados/métodos
7.
ACS Appl Mater Interfaces ; 12(40): 44588-44596, 2020 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-32924426

RESUMO

Methanol crossover is one of the largest problems in direct methanol fuel cells (DMFCs). Methanol passing from the anode to the cathode through the membrane is oxidized at the cathode, degrading the DMFC performance, and the intermediates of the methanol oxidation reaction (MOR) cause cathode catalyst poisoning. Therefore, it is essential to develop a cathode catalyst capable of inhibiting MOR while promoting the oxygen reduction reaction (ORR), which is a typical cathode reaction in DMFCs. In this study, a carbon-encapsulated Pt cathode catalyst was synthesized for this purpose. The catalyst was simply synthesized by heat treatment of Pt-aniline complex-coated carbon nanofibers. The carbon shell of the catalyst was effective in inhibiting methanol from accessing the Pt core, and this effect became more prominent as the graphitization degree of the carbon shell increased. Meanwhile, the carbon shell allowed O2 to permeate regardless of the graphitization degree, enabling the Pt core to participate in ORR. The synthesized catalyst showed higher performance and stability in single-cell tests under various conditions compared to commercial Pt/C.

8.
Adv Exp Med Biol ; 1078: 421-443, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30357636

RESUMO

Biologically inspired approaches employing nanoengineering techniques have been influential in the progress of neural tissue repair and regeneration. Neural tissues are exposed to complex nanoscale environments such as nanofibrils. In this chapter, we summarize representative nanotechniques, such as electrospinning, lithography, and 3D bioprinting, and their use in the design and fabrication of nanopatterned scaffolds for neural tissue engineering and regenerative medicine. Nanotopographical cues in combination with other cues (e.g., chemical cues) are crucial to neural tissue repair and regeneration using cells, including various types of stem cells. Production of biologically inspired nanopatterned scaffolds may encourage the next revolution for studies aiming to advance neural tissue engineering and regenerative medicine.


Assuntos
Nanoestruturas , Regeneração Nervosa , Medicina Regenerativa , Engenharia Tecidual , Alicerces Teciduais , Bioimpressão , Humanos , Células-Tronco
9.
Nanomaterials (Basel) ; 8(7)2018 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-30037100

RESUMO

Stem cells derived from dental tissues-dental stem cells-are favored due to their easy acquisition. Among them, dental pulp stem cells (DPSCs) extracted from the dental pulp have many advantages, such as high proliferation and a highly purified population. Although their ability for neurogenic differentiation has been highlighted and neurogenic differentiation using electrospun nanofibers (NFs) has been performed, graphene-incorporated NFs have never been applied for DPSC neurogenic differentiation. Here, reduced graphene oxide (RGO)-polycaprolactone (PCL) hybrid electrospun NFs were developed and applied for enhanced neurogenesis of DPSCs. First, RGO-PCL NFs were fabricated by electrospinning with incorporation of RGO and alignments, and their chemical and morphological characteristics were evaluated. Furthermore, in vitro NF properties, such as influence on the cellular alignments and cell viability of DPSCs, were also analyzed. The influences of NFs on DPSCs neurogenesis were also analyzed. The results confirmed that an appropriate concentration of RGO promoted better DPSC neurogenesis. Furthermore, the use of random NFs facilitated contiguous junctions of differentiated cells, whereas the use of aligned NFs facilitated an aligned junction of differentiated cells along the direction of NF alignments. Our findings showed that RGO-PCL NFs can be a useful tool for DPSC neurogenesis, which will help regeneration in neurodegenerative and neurodefective diseases.

10.
Tissue Eng Regen Med ; 14(5): 481-493, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30603503

RESUMO

Graphene-based approaches have been influential in the design and manipulation of dental implants and tissue regeneration to overcome the problems associated with traditional titanium-based dental implants, such as their low biological affinity. Here, we describe the current progress of graphene-based platforms, which have contributed to major advances for improving cellular functions in in vitro and in vivo applications of dental implants. We also present opinions on the principal challenges and future prospects for new graphene-based platforms for the development of advanced graphene dental implants and tissue regeneration.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...