Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genes Genomics ; 46(4): 499-510, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38453815

RESUMO

BACKGROUND: The skin microbiome is essential in guarding against harmful pathogens and responding to environmental changes by generating substances useful in the cosmetic and pharmaceutical industries. Among these microorganisms, Streptococcus is a bacterial species identified in various isolation sources. In 2021, a strain of Streptococcus infantis, CX-4, was identified from facial skin and found to be linked to skin structure and elasticity. As the skin-derived strain differs from other S. infantis strains, which are usually of oral origin, it emphasizes the significance of bacterial variation by the environment. OBJECTIVE: This study aims to explore the unique characteristics of the CX-4 compared to seven oral-derived Streptococcus strains based on the Whole-Genome Sequencing data, focusing on its potential role in skin health and its possible application in cosmetic strategies. METHODS: The genome of the CX-4 strain was constructed using PacBio Sequencing, with the assembly performed using the SMRT protocol. Comparative whole-genome analysis was then performed with seven closely related strains, utilizing web-based tools like PATRIC, OrthoVenn3, and EggNOG-mapper, for various analyses, including protein association analysis using STRING. RESULTS: Our analysis unveiled a substantial number of Clusters of Orthologous Groups in diverse functional categories in CX-4, among which sphingosine kinase (SphK) emerged as a unique product, exclusively present in the CX-4 strain. SphK is a critical enzyme in the sphingolipid metabolic pathway, generating sphingosine-1-phosphate. The study also brought potential associations with isoprene formation and retinoic acid synthesis, the latter being a metabolite of vitamin A, renowned for its crucial function in promoting skin cell growth, differentiation, and maintaining of skin barrier integrity. These findings collectively suggest the potential of the CX-4 strain in enhancing of skin barrier functionality. CONCLUSION: Our research underscores the potential of the skin-derived S. infantis CX-4 strain by revealing unique bacterial compounds and their potential roles on human skin.


Assuntos
Genoma Bacteriano , Streptococcus , Humanos , Filogenia , Streptococcus/genética , Sequenciamento Completo do Genoma
3.
Adv Biol (Weinh) ; 8(4): e2300325, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38342585

RESUMO

Skin is an organ having a crucial role in the protection of muscle, bone, and internal organs and undergoing continuous self-renewal and aged. The growing interest in the prevention of skin aging and rejuvenation has sparked a surge of industrial and research studies focusing on the biological and transcriptional changes that occur during skin development and aging. In this study, the aim is to identify transcriptional differences between two main types of human skin cells: the human dermal fibroblasts (HDFs) and the human epidermis keratinocytes (HEKs) isolated from 30 neonatal and 30 adults (old) skin. Through differentially expressed gene (DEG) profiling using DEseq2, 604 up-, and 769 down-regulated genes are identified in the old group. A functional analysis using Metascape Gene Ontology and Reactome pathways revealed systematic transcriptomic shifts in key skin formation and maintenance markers, alongside a distinct difference in HOX gene families crucial for embryonic development and diverse biological processes. Among the 39 human HOX gene family, ten posterior HOX genes (HOXA10, 11, 13, HOXB13, HOXC11, and HOXD9-13) are significantly downregulated, and anterior 25 genes (HOXA2-7, HOXB1-9, HOXC4-6 and 8-9, and HOXD1,3,4 and 8) are upregulated, especially in the old HDFs. The study successfully demonstrates the correlation between HOX genes and the skin aging process, providing strong evidence that HOX genes are proposed as a new marker for skin aging assessment.


Assuntos
Genes Homeobox , Pele , Adulto , Recém-Nascido , Humanos , Idoso , Perfilação da Expressão Gênica , Queratinócitos , Transcriptoma/genética , Fatores de Transcrição/genética , Proteínas de Homeodomínio/genética
5.
Genes Genomics ; 46(1): 13-25, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37971618

RESUMO

BACKGROUND: The skin microbiome, a diverse community of microorganisms, plays a crucial role in maintaining skin health. Among these microorganisms, the gram-positive bacterium Micrococcus luteus exhibits potential for promoting skin health. This study focuses on postbiotics derived from M. luteus YM-4, a strain isolated from human skin. OBJECTIVE: Our objective is to explore the beneficial effects of YM-4 culture filtrate on dermatological health, including enhancing barrier function, modulating immune response, and aiding recovery from environmental damage. METHODS: The effects of the YM-4 culture filtrate were tested on human keratinocytes and fibroblasts under various conditions using real-time PCR for gene expression analysis and fibroblast migration assays. A dehydration-simulated model was employed to prepare RNA-Seq samples from HaCaT cells treated with the YM-4 culture filtrate. Differentially expressed genes were identified and functionally classified through k-means clustering, gene ontology terms enrichment analyses, and protein-protein interactions mapping. RESULTS: The YM-4 culture filtrate enhanced the expression of genes involved in skin hydration, hyaluronic acid synthesis, barrier function, and cell proliferation. It also reduced inflammation markers in keratinocytes and fibroblasts under stress conditions. It mitigated UVB-induced collagen degradation while promoted collagen synthesis, suggesting anti-aging properties, and accelerated wound healing processes by promoting cell proliferation and migration. RNA sequencing analysis revealed that the YM-4 culture filtrate could reverse dehydration-induced transcriptional changes towards a state similar to untreated cells. CONCLUSION: M. luteus YM-4 culture filtrate exhibits significant therapeutic potential for dermatological applications.


Assuntos
Desidratação , Epirubicina/análogos & derivados , Micrococcus luteus , Humanos , Desidratação/metabolismo , Pele/metabolismo , Colágeno/metabolismo
6.
Antonie Van Leeuwenhoek ; 116(11): 1139-1150, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37658955

RESUMO

A non-motile, novel actinobacterial strain, Kera-3T, which is a gram-positive, aerobic, rod-shaped bacterium, was isolated from human keratinocytes on 1/10 diluted R2A agar. Whole-cell hydrolysis of amino acids revealed the presence of meso-DAP, alanine, and glutamic acid. The predominant menaquinone was MK-9 (H8), whereas the primary fatty acids were C16:0 and C18:1 ω9c. The major phospholipids included diphosphatidylglycerol and aminophospholipids, along with an unidentified phosphoglycolipid and an aminophosphoglycolipid. The G+C content of the genomic DNA was 73.2%, based on the complete genome sequence. Phylogenetic analyses of the 16S rRNA gene sequence and phylogenomic analysis of 91 core genes showed that strain Kera-3T formed a new lineage in the family Iamiaceae, with the closest neighbour Rhabdothermincola sediminis SYSU G02662T having 91.19% 16S rRNA gene sequence identity. A comparative genomic study of the predicted general metabolism and carbohydrate-active enzymes supported the phylogenetic and phylogenomic data. Based on the analysis of physiological, biochemical, and genomic characteristics, strain Kera-3T can be distinguished from known genera in the family Iamiaceae and represents a novel genus and species. Therefore, the name Dermatobacter hominis gen. nov., sp. nov. was proposed, with the type strain Kera-3T (= KACC 22415T = LMG 32493T).

7.
Plants (Basel) ; 12(13)2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37446960

RESUMO

Centella asiatica is a traditional herbaceous plant with numerous beneficial effects, widely known for its medicinal and cosmetic applications. Maximizing its growth can lead to beneficial effects, by focusing on the use of its active compounds. The use of plant growth-promoting rhizobacteria (PGPR) is known to be an alternative to chemical fertilizers. In this study, we used the PGPR Priestia megaterium HY-01 to increase the yield of C. asiatica. In vitro assays showed that HY-01 exhibited plant growth-promoting activities (IAA production, denitrification, phosphate solubilization, and urease activity). Genomic analyses also showed that the strain has plant growth-promoting-related genes that corroborate with the different PGP activities found in the assays. This strain was subsequently used in field experiments to test its effectiveness on the growth of C. asiatica. After four months of application, leaf and root samples were collected to measure the plant growth rate. Moreover, we checked the rhizosphere microbiome between the treated and non-treated plots. Our results suggest that treatment with Hyang-yak-01 not only improved the growth of C. asiatica (leaf length, leaf weight, leaf width, root length, root width, and chlorophyll content) but also influenced the rhizosphere microbiome. Biodiversity was higher in the treated group, and the bacterial composition was also different from the control group.

8.
PLoS One ; 18(6): e0287523, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37347743

RESUMO

The woody Sonchus alliance, a spectacular example of adaptive radiation with six genera and approximately 31 species, is found exclusively on three Macaronesian Islands (Madeira, Canaries, and Cape Verdes) in the Atlantic Ocean. Four of the Sonchus taxa are restricted to Madeira, including shrubs and small trees at higher elevations (S. fruticosus and S. pinnatus), and caudex perennials in the lower coastal areas (S. ustulatus subsp. maderensis and S. ustulatus subsp. ustulatus). The Madeiran Sonchus stemmed from a single colonization event that originated from the Canaries < 3 million years ago. However, the plastome evolution and species relationships remains insufficiently explored. We therefore assembled and characterized the plastomes of four Sonchus taxa from Madeira and conducted a phylogenomic analysis. We found highly conserved plastome sequences among the taxa, further supporting a single and recent origin. We also found highly conserved plastomes among the cosmopolitan weedy Sonchus, Macaronesian Sonchus in the Atlantic, and Juan Fernández Islands Dendroseris in the Pacific. Furthermore, we identified four mutation hotspot regions (trnK-rps16, petN-psbM, ndhF-Ψycf1, and ycf1) and simple sequence repeat motifs. This study strongly supports the monophyly of Madeiran Sonchus. However, its relationship with the remaining woody Sonchus alliance from the Canary Islands requires further investigation.


Assuntos
Asteraceae , Sonchus , Filogenia , Sonchus/genética , Portugal , Madeira
9.
Microorganisms ; 11(4)2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-37110293

RESUMO

Functional cosmetics industries using skin microbiome screening and beneficial materials isolated from key microorganisms are receiving increasing attention. Since Epidermidibacterium keratini EPI-7T was first discovered in human skin, previous studies have confirmed that it can produce a new pyrimidine compound, 1,1'-biuracil, having anti-aging effects on human skin. Therefore, we conducted genomic analyses to judge the use value of E. keratini EPI-7T and provide up-to-date information. Whole-genome sequencing analysis of E. keratini EPI-7T was performed to generate new complete genome and annotation information. E. keratini EPI-7T genome was subjected to comparative genomic analysis with a group of closely-related strains and skin flora strains through bioinformatic analysis. Furthermore, based on annotation information, we explored metabolic pathways for valuable substances that can be used in functional cosmetics. In this study, the whole-genome sequencing (WGS) and annotation results of E. keratini EPI-7T were improved, and through comparative analysis, it was confirmed that the E. keratini EPI-7T has more metabolite-related genes than comparison strains. In addition, we annotated the vital genes for biosynthesis of 20 amino acids, orotic acid, riboflavin (B2) and chorismate. In particular, we were able to prospect that orotic acid could accumulate inside E. keratini EPI-7T under uracil-enriched conditions. Therefore, through a genomics approach, this study aims to provide genetic information for the hidden potential of E. keratini EPI-7T and the strain development and biotechnology utilization to be conducted in further studies.

10.
Int J Mol Sci ; 24(5)2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36902064

RESUMO

The present study investigated the effect of topical application of Epidermidibacterium Keratini (EPI-7) ferment filtrate, which is a postbiotic product of a novel actinobacteria, on skin aging, by performing a prospective randomized split-face clinical study on Asian woman participants. The investigators measured skin biophysical parameters, including skin barrier function, elasticity, and dermal density, and revealed that the application of the EPI-7 ferment filtrate-including test product resulted in significantly higher improvements in barrier function, skin elasticity, and dermal density compared to the placebo group. This study also investigated the influence of EPI-7 ferment filtrate on skin microbiome diversity to access its potential beneficial effects and safety. EPI-7 ferment filtrate increased the abundance of commensal microbes belonging to Cutibacterium, Staphylococcus, Corynebacterium, Streptococcus, Lawsonella, Clostridium, Rothia, Lactobacillus, and Prevotella. The abundance of Cutibacterium was significantly increased along with significant changes in Clostridium and Prevotella abundance. Therefore, EPI-7 postbiotics, which contain the metabolite called orotic acid, ameliorate the skin microbiota linked with the aging phenotype of the skin. This study provides preliminary evidence that postbiotic therapy may affect the signs of skin aging and microbial diversity. To confirm the positive effect of EPI-7 postbiotics and microbial interaction, additional clinical investigations and functional analyses are required.


Assuntos
Actinomycetales , Propionibacteriaceae , Envelhecimento da Pele , Humanos , Estudos Prospectivos , Pele/microbiologia
11.
Genomics Inform ; 21(4): e52, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38224719

RESUMO

Accurate and efficient microbial diagnosis is crucial for effective molecular diagnostics, especially in the field of human healthcare. The gold standard equipment widely employed for detecting specific microorganisms in molecular diagnosis is quantitative real-time polymerase chain reaction (qRT-PCR). However, its limitations in low metagenomic DNA yield samples necessitate exploring alternative approaches. Digital PCR, by quantifying the number of copies of the target sequence, provides absolute quantification results for the bacterial strain. In this study, we compared the diagnostic efficiency of qRT-PCR and digital PCR in detecting a particular bacterial strain (Staphylococcus aureus), focusing on skin-derived DNA samples. Experimentally, specific primer for S. aureus were designed at transcription elongation factor (greA) gene and the target amplicon were cloned and sequenced to validate efficiency of specificity to the greA gene of S. aureus. To quantify the absolute amount of microorganisms present on the skin, the variable region 5 (V5) of the 16S rRNA gene was used, and primers for S. aureus identification were used to relative their amount in the subject's skin. The findings demonstrate the absolute convenience and efficiency of digital PCR in microbial diagnostics. We suggest that the high sensitivity and precise quantification provided by digital PCR could be a promising tool for detecting specific microorganisms, especially in skin-derived DNA samples with low metagenomic DNA yields, and that further research and implementation is needed to improve medical practice and diagnosis.

12.
Molecules ; 27(16)2022 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-36014376

RESUMO

The skin tissue of the scalp is unique from other skin tissues because it coexists with hair, and many differences in microbial composition have been confirmed. In scalp tissues, hair loss occurs due to a combination of internal and external factors, and several studies are being conducted to counteract this. However, not many studies have addressed hair loss from the perspective of the microbiome. In this study, subjects with hair loss and those with normal scalps were set as experimental and control groups, respectively. In the experimental group, hair loss had progressed, and there was a large difference in microbiome composition compared to the group with normal scalps. In particular, differences in Accumulibacter, Staphylococcus, and Corynebacterium were found. From Staphylococcus epidermidis Cicaria, two active components were isolated as a result of repeated column chromatography. Spectroscopic data led to the determination of chemical structures for adenosine and biotin. Fractions were obtained, and ex vivo tests were conducted using hair follicles derived from human scalp tissue. When the microbiome adenosine-treated group was compared to the control group, hair follicle length was increased, and hair root diameter was maintained during the experimental periods. In addition, the Cicaria culture medium and the microbial adenosine- and biotin-treated groups maintained the anagen phase, reducing progression to the catagen phase in the hair growth cycle. In conclusion, it was confirmed that the Cicaria culture medium and the microbial adenosine and biotin derived from the culture were effective in inhibiting hair loss.


Assuntos
Microbiota , Staphylococcus epidermidis , Adenosina , Alopecia , Biotina , Folículo Piloso , Humanos
13.
Sensors (Basel) ; 22(8)2022 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-35459001

RESUMO

The human skin sebum suggests that it (along with other epidermal surface lipids) plays a role in skin barrier formation, the moderation of cutaneous inflammation, and antimicrobial defense. Various methods have been developed for collecting and measuring skin sebum. We tested methods of detection using "color intensity", by staining the skin casual sebum. This process was conducted in three steps; first, the selection of materials for sebum collection; second, staining the collected sebum; third, the development of a device that can measure the level of stained sebum. A plastic film was used to effectively collect sebum that increased with the replacement time of the sebum. In addition, the collected sebum was stained with Oil Red O (ORO) and checked with RGB; as a result, the R2 value was higher than 0.9. It was also confirmed that the correlation value was higher than 0.9 in the comparison result with Sebumeter®, which is a common standard technology. Finally, it was confirmed that the R2 value was higher than 0.9 in the detection value using the sensor. In conclusion, we have proven the proof of concept (PoC) for this method, and we would like to introduce an effective sebum measurement method that differs from the existing method.


Assuntos
Sebo , Pele , Compostos Azo , Humanos , Coloração e Rotulagem
14.
Genes Genomics ; 43(12): 1483-1495, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34734352

RESUMO

BACKGROUND: Skin is an essential outer barrier and supports the growth of commensal microorganisms that protects a host from the offense of foreign toxic organisms. With the rapid development of next-generation sequencing (NGS)-based applications, skin microbiome research for facial health care has reached industry growth, such as therapy and cosmetic product development. Despite the acceleration of skin microbiome research, experimental standardization protocol has not yet been established in the facial site and method of sampling. OBJECTIVE: Thus, we aimed to investigate the differences in microbial composition at each facial site (cheek, mouth, forehead, and entire face) using comprehensive microbiome analysis. METHODS: Twelve specimens from three men (four specimens per one person) were collected. The hypervariable regions (V3-V4) of the bacterial 16S rRNA gene were targeted for 16S amplicon library construction and classification of bacterial taxonomy. Skin microbial composition for all specimens was investigated, and the differences site-by-site in skin microbial composition were analyzed and evaluated by the various statistical tests. RESULTS: We were able to validate the independent correlation between the skin microbiome composition and the facial sites. The cheek site showed the highest alpha-diversity in richness and evenness scores compared to the forehead and mouth. The cheek and mouth sites showed a positive correlation (R2 value > 0.93) with the entire face, while the forehead sites were negatively correlated (R2 value < 0.2). Given the relative abundance based on statistical correlation analysis, we estimated that the cheek site could be considered an optimal topical site to replace the entire face. CONCLUSION: Our study suggests that skin microbiome profiling of four facial sites confirms that the cheek shows the most similar skin flora with the entire face. This study would be informative for preventing bias caused by sampling methods before researching and understanding skin cosmetics development or skin diseases.


Assuntos
Face/microbiologia , Microbiota , Pele/microbiologia , Adulto , Humanos , Masculino , Especificidade de Órgãos
15.
Sci Rep ; 11(1): 10138, 2021 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-33980951

RESUMO

The skin microbiome, especially the axillary microbiome, consists of odor-causing bacteria that decompose odorless sweat into malodor compounds, which contributes to the formation of body odor. Plant-derived products are a cheap source of bioactive compounds that are common ingredients in cosmetics. Microbial bioconversion of natural products is an ecofriendly and economical method for production of new or improved biologically active compounds. Therefore, in this study, we tested the potential of a Lactobacillus acidophilus KNU-02-mediated bioconverted product (BLC) of Lotus corniculatus seed to reduce axillary malodor and its effect on the associated axillary microbiota. A chemical profile analysis revealed that benzoic acid was the most abundant chemical compound in BLC, which increased following bioconversion. Moreover, BLC treatment was found to reduce the intensity of axillary malodor. We tested the axillary microbiome of 18 study participants, divided equally into BLC and placebo groups, and revealed through 16S rRNA gene sequencing that Staphylococcus, Corynebacterium, and Anaerococcus were the dominant taxa, and some of these taxa were significantly associated with axillary malodor. After one week of BLC treatment, the abundance of Corynebacterium and Anaerococcus, which are associated with well-known odor-related genes that produce volatile fatty acids, had significantly reduced. Likewise, the identified odor-related genes decreased after the application of BLC. BLC treatment enhanced the richness and network density of the axillary microbial community. The placebo group, on the other hand, showed no difference in the microbial richness, odor associated taxa, and predicted functional genes after a week. The results demonstrated that BLC has the potential to reduce the axillary malodor and the associated odor-causing bacteria, which makes BLC a viable deodorant material in cosmetic products.


Assuntos
Lotus/química , Microbiota/efeitos dos fármacos , Odorantes , Extratos Vegetais/farmacologia , Sementes/química , Axila/microbiologia , Feminino , Humanos , Metagenômica/métodos , Compostos Fitoquímicos/química , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/química , Pele/microbiologia
16.
Commun Biol ; 4(1): 231, 2021 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-33608630

RESUMO

An unbalanced microbial ecosystem on the human skin is closely related to skin diseases and has been associated with inflammation and immune responses. However, little is known about the role of the skin microbiome on skin aging. Here, we report that the Streptococcus species improved the skin structure and barrier function, thereby contributing to anti-aging. Metagenomic analyses showed the abundance of Streptococcus in younger individuals or those having more elastic skin. Particularly, we isolated Streptococcus pneumoniae, Streptococcus infantis, and Streptococcus thermophilus from face of young individuals. Treatment with secretions of S. pneumoniae and S. infantis induced the expression of genes associated with the formation of skin structure and the skin barrier function in human skin cells. The application of culture supernatant including Streptococcal secretions on human skin showed marked improvements on skin phenotypes such as elasticity, hydration, and desquamation. Gene Ontology analysis revealed overlaps in spermidine biosynthetic and glycogen biosynthetic processes. Streptococcus-secreted spermidine contributed to the recovery of skin structure and barrier function through the upregulation of collagen and lipid synthesis in aged cells. Overall, our data suggest the role of skin microbiome into anti-aging and clinical applications.


Assuntos
Microbiota , Envelhecimento da Pele , Pele/microbiologia , Espermidina/metabolismo , Streptococcus/metabolismo , Adulto , Colágeno/metabolismo , Disbiose , Elasticidade , Feminino , Humanos , Lipogênese , Metagenoma , Fenótipo , Pele/metabolismo , Streptococcus/genética , Streptococcus/crescimento & desenvolvimento , Adulto Jovem
17.
Int J Syst Evol Microbiol ; 68(3): 745-750, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29458473

RESUMO

A novel actinobacterial strain, designated EPI-7T, was isolated on R2A agar from human skin (keratinocytes) and subjected to a taxonomic study using a polyphasic approach. Strain EPI-7T showed a Gram-positive reaction, was non-motile, non-spore-forming, and cells had a rod-shape. Colonies were round, convex and pale yellow. Phylogenetic analysis based on 16S rRNA gene sequences showed that the novel isolate formed a cluster with several uncultured bacterial clones and with cultured members of the genera Modestobacter and Sporichthya. The 16S rRNA gene sequence similarities with respect to the type strains of recognized species from the above genera and other phylogenetic neighbours ranged from 92.6 to 93.4 %. The G+C content of the genomic DNA was 68.9 mol%. The only isoprenoid quinone was MK-9(H4), and the major fatty acids detected were C17 : 1ω8c, C16 : 0, iso-C15 : 0 and summed feature 3. The major polar lipids were found to be phosphatidylethanolamine, phosphatidylinositol, three unidentified phospholipids, phosphatidylglycerol, phosphatidylcholine, two unidentified amino lipids and three unidentified lipids. The cell-wall peptidoglycan contained meso-diaminopimelic acid, glutamic acid and alanine. Whole-cell sugars present included rhamnose, glucose and galactose. The combination of the genotypic and phenotypic data allowed differentiation of strain EPI-7T from its closest phylogenetic neighbours and provided evidence that strain EPI-7T represents a novel genus and species in the family Sporichthyaceae. The name Epidermidibacterium keratini gen. nov., sp. nov. is proposed with the type strain being EPI-7T (=KCCM 90264T=JCM 31644T).


Assuntos
Actinomycetales/classificação , Epiderme/microbiologia , Queratinócitos/microbiologia , Filogenia , Actinomycetales/genética , Actinomycetales/isolamento & purificação , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácido Diaminopimélico/química , Ácidos Graxos/química , Humanos , Peptidoglicano/química , Fosfolipídeos/química , Pigmentação , RNA Ribossômico 16S/genética , República da Coreia , Análise de Sequência de DNA , Vitamina K 2/análogos & derivados , Vitamina K 2/química
18.
J Phys Ther Sci ; 27(11): 3511-3, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26696727

RESUMO

[Purpose] The purpose of this study was to examine the effects of transcranial direct current stimulation (tDCS) applied to the cerebral cortex motor area on the upper extremity functions of hemiplegic patients. [Subjects and Methods] Twenty four Patients with hemiplegia resulting from a stroke were divided into two groups: a tDCS group that received tDCS and physical therapy and a control group that received only physical therapy. A functional evaluation of the two groups was performed, and an electrophysiological evaluation was conducted before and after the experiment. Statistical analyses were performed to verify differences before and after the experiment. All statistical significance levels were set at 0.05. [Results] The results showed that functional evaluation scores for the elbow joint and hand increased after the treatment in both the experimental group and the control group, and the increases were statistically significantly different. [Conclusion] tDCS was effective in improving the upper extremity motor function of stroke patients. Additional research is warranted on the usefulness of tDCS in the rehabilitation of stroke patients in the clinical field.

19.
J Phys Ther Sci ; 27(9): 2871-3, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26504314

RESUMO

[Purpose] This study investigated the effects of underwater treadmill walking training on the peak torque of the knee in hemiplegic patients. [Subjects and Methods] Thirty-two subjects, who were randomly allocated to an experimental group (n=16) and a control group (n=16), performed underwater treadmill walking training and overground treadmill walking training, respectively, for 30 minutes/session, 3 sessions/week, for 6 weeks. An isokinetic dynamometer was used to assess the peak torque. [Results] The subjects in the experimental group showed an increase in the peak knee extension torque compared to the control group. [Conclusion] The results suggested that underwater treadmill walking training has a greater effect on peak knee extension torque at velocities of 60°/sec and 120°/sec than overground treadmill walking training.

20.
J Phys Ther Sci ; 27(9): 2981-3, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26504339

RESUMO

[Purpose] The purpose of this study was to determine alterations of spinal range of motion while sitting, in hemiplegic patients with or without gait available. [Subjects] There was a gait group (GG) of 6 subjects, and a non-gait group (NGG) of 6 subjects, both with hemiplegia after a stroke. [Methods] The subjects in both groups were given an intervention focusing on ankle dorsi-flexion of the affected foot only once for 30 minutes. The Spinal Mouse was used to gain data of the spinal range of motion before and after the intervention and 30 minutes later for follow-up test. [Results] Only in the gait group, lumbar spinal range of motion showed a significant difference when using flexion extension. Sacral hip and inclination were both increased gradually when upright flexion and flexion extension were used. [Conclusion] Facilitating foot for ankle dorsi-flexion is effective on spinal range of motion especially sacrohip, lumbar spine and inclination only for the subjects in the gait group. The results suggested that ankle dorsi-flexion exercise influences spinal range of motion in a sitting position.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...