Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Epidemics ; 47: 100753, 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38492544

RESUMO

The COVID-19 pandemic led to an unprecedented demand for projections of disease burden and healthcare utilization under scenarios ranging from unmitigated spread to strict social distancing policies. In response, members of the Johns Hopkins Infectious Disease Dynamics Group developed flepiMoP (formerly called the COVID Scenario Modeling Pipeline), a comprehensive open-source software pipeline designed for creating and simulating compartmental models of infectious disease transmission and inferring parameters through these models. The framework has been used extensively to produce short-term forecasts and longer-term scenario projections of COVID-19 at the state and county level in the US, for COVID-19 in other countries at various geographic scales, and more recently for seasonal influenza. In this paper, we highlight how the flepiMoP has evolved throughout the COVID-19 pandemic to address changing epidemiological dynamics, new interventions, and shifts in policy-relevant model outputs. As the framework has reached a mature state, we provide a detailed overview of flepiMoP's key features and remaining limitations, thereby distributing flepiMoP and its documentation as a flexible and powerful tool for researchers and public health professionals to rapidly build and deploy large-scale complex infectious disease models for any pathogen and demographic setup.

2.
Nat Med ; 30(4): 1104-1110, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38443690

RESUMO

Systematic testing for Vibrio cholerae O1 is rare, which means that the world's limited supply of oral cholera vaccines (OCVs) may not be delivered to areas with the highest true cholera burden. Here we used a phenomenological model with subnational geographic targeting and fine-scale vaccine effects to model how expanding V. cholerae testing affected impact and cost-effectiveness for preventive vaccination campaigns across different bacteriological confirmation and vaccine targeting assumptions in 35 African countries. Systematic testing followed by OCV targeting based on confirmed cholera yielded higher efficiency and cost-effectiveness and slightly fewer averted cases than status quo scenarios targeting suspected cholera. Targeting vaccine to populations with an annual incidence rate greater than 10 per 10,000, the testing scenario averted 10.8 (95% prediction interval (PI) 9.4-12.6) cases per 1,000 fully vaccinated persons while the status quo scenario averted 6.9 (95% PI 6.0-7.8) cases per 1,000 fully vaccinated persons. In the testing scenario, testing costs increased by US$31 (95% PI 25-39) while vaccination costs reduced by US$248 (95% PI 176-326) per averted case compared to the status quo. Introduction of systematic testing into cholera surveillance could improve efficiency and reach of global OCV supply for preventive vaccination.


Assuntos
Vacinas contra Cólera , Cólera , Humanos , Cólera/epidemiologia , Cólera/prevenção & controle , Administração Oral , Programas de Imunização , Vacinação
3.
Lancet Infect Dis ; 24(5): 514-522, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38246191

RESUMO

BACKGROUND: A global shortage of cholera vaccines has increased the use of single-dose regimens, rather than the standard two-dose regimen. There is sparse evidence on single-dose protection, particularly in children. In 2020, a mass vaccination campaign was conducted in Uvira, an endemic urban setting in eastern Democratic Republic of the Congo, resulting in largely single-dose coverage. We examined the effectiveness of a single-dose of the oral cholera vaccine Euvichol-Plus in this high-burden setting. METHODS: In this matched case-control study, we recruited individuals with medically attended confirmed cholera in the two cholera treatment facilities in the city of Uvira. The control group consisted of age-matched, sex-matched, and neighbourhood-matched community individuals. We recruited across two distinct periods: Oct 14, 2021, to March 10, 2022 (12-17 months after vaccination), and Nov 21, 2022, to Oct 18, 2023 (24-36 months after vaccination). Study staff administered structured questionnaires to all participants to capture demographics, household conditions, potential confounding variables, and vaccination status. The odds of vaccination for the case and control groups were contrasted in conditional logistic regression models to estimate unadjusted and adjusted vaccine effectiveness. FINDINGS: We enrolled 658 individuals with confirmed cholera and 2274 matched individuals for the control group. 99 (15·1%) individuals in the case group were younger than 5 years at the time of vaccination. The adjusted single-dose vaccine effectiveness was 52·7% (95% CI 31·4 to 67·4) 12-17 months after vaccination and 44·7% (24·8 to 59·4) 24-36 months after vaccination. Although protection in the first 12-17 months after vaccination was similar for children aged 1-4 years and older individuals, the estimate of protection in children aged 1-4 years appeared to wane during the third year after vaccination (adjusted vaccine effectiveness 32·9%, 95% CI -30·7 to 65·5), with CIs spanning the null. INTERPRETATION: A single dose of Euvichol-Plus provided substantial protection against medically attended cholera for at least 36 months after vaccination in this cholera-endemic setting. Although the evidence provides support for similar levels of protection in young children and others in the short term, protection among children younger than 5 years might wane significantly during the third year after vaccination. FUNDING: Wellcome Trust and Gavi, the Vaccine Alliance.


Assuntos
Vacinas contra Cólera , Cólera , Vacinas de Produtos Inativados , Humanos , Vacinas contra Cólera/administração & dosagem , Vacinas contra Cólera/imunologia , República Democrática do Congo/epidemiologia , Cólera/prevenção & controle , Cólera/epidemiologia , Estudos de Casos e Controles , Masculino , Feminino , Adolescente , Pré-Escolar , Criança , Adulto , Administração Oral , Adulto Jovem , Vacinas de Produtos Inativados/administração & dosagem , Vacinas de Produtos Inativados/imunologia , Lactente , Eficácia de Vacinas , Doenças Endêmicas/prevenção & controle , Pessoa de Meia-Idade , Vacinação em Massa , Vacinação/estatística & dados numéricos
4.
Nat Commun ; 14(1): 7260, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37985664

RESUMO

Our ability to forecast epidemics far into the future is constrained by the many complexities of disease systems. Realistic longer-term projections may, however, be possible under well-defined scenarios that specify the future state of critical epidemic drivers. Since December 2020, the U.S. COVID-19 Scenario Modeling Hub (SMH) has convened multiple modeling teams to make months ahead projections of SARS-CoV-2 burden, totaling nearly 1.8 million national and state-level projections. Here, we find SMH performance varied widely as a function of both scenario validity and model calibration. We show scenarios remained close to reality for 22 weeks on average before the arrival of unanticipated SARS-CoV-2 variants invalidated key assumptions. An ensemble of participating models that preserved variation between models (using the linear opinion pool method) was consistently more reliable than any single model in periods of valid scenario assumptions, while projection interval coverage was near target levels. SMH projections were used to guide pandemic response, illustrating the value of collaborative hubs for longer-term scenario projections.


Assuntos
COVID-19 , Humanos , COVID-19/epidemiologia , Pandemias/prevenção & controle , SARS-CoV-2 , Incerteza
5.
PLoS Med ; 20(9): e1004286, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37708235

RESUMO

BACKGROUND: Cholera surveillance relies on clinical diagnosis of acute watery diarrhea. Suspected cholera case definitions have high sensitivity but low specificity, challenging our ability to characterize cholera burden and epidemiology. Our objective was to estimate the proportion of clinically suspected cholera that are true Vibrio cholerae infections and identify factors that explain variation in positivity. METHODS AND FINDINGS: We conducted a systematic review of studies that tested ≥10 suspected cholera cases for V. cholerae O1/O139 using culture, PCR, and/or a rapid diagnostic test. We searched PubMed, Embase, Scopus, and Google Scholar for studies that sampled at least one suspected case between January 1, 2000 and April 19, 2023, to reflect contemporary patterns in V. cholerae positivity. We estimated diagnostic test sensitivity and specificity using a latent class meta-analysis. We estimated V. cholerae positivity using a random-effects meta-analysis, adjusting for test performance. We included 119 studies from 30 countries. V. cholerae positivity was lower in studies with representative sampling and in studies that set minimum ages in suspected case definitions. After adjusting for test performance, on average, 52% (95% credible interval (CrI): 24%, 80%) of suspected cases represented true V. cholerae infections. After adjusting for test performance and study methodology, the odds of a suspected case having a true infection were 5.71 (odds ratio 95% CrI: 1.53, 15.43) times higher when surveillance was initiated in response to an outbreak than in non-outbreak settings. Variation across studies was high, and a limitation of our approach was that we were unable to explain all the heterogeneity with study-level attributes, including diagnostic test used, setting, and case definitions. CONCLUSIONS: In this study, we found that burden estimates based on suspected cases alone may overestimate the incidence of medically attended cholera by 2-fold. However, accounting for cases missed by traditional clinical surveillance is key to unbiased cholera burden estimates. Given the substantial variability in positivity between settings, extrapolations from suspected to confirmed cases, which is necessary to estimate cholera incidence rates without exhaustive testing, should be based on local data.


Assuntos
Cólera , Vibrio cholerae , Humanos , Cólera/diagnóstico , Cólera/epidemiologia , Vibrio cholerae/genética , Surtos de Doenças , Diarreia/epidemiologia , Reação em Cadeia da Polimerase
6.
Environ Sci Technol ; 57(28): 10185-10192, 2023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37409942

RESUMO

Improvements in water and sanitation should reduce cholera risk though the associations between cholera and specific water and sanitation access measures remain unclear. We estimated the association between eight water and sanitation measures and annual cholera incidence access across sub-Saharan Africa (2010-2016) for data aggregated at the country and district levels. We fit random forest regression and classification models to understand how well these measures combined might be able to predict cholera incidence rates and identify high cholera incidence areas. Across spatial scales, piped or "other improved" water access was inversely associated with cholera incidence. Access to piped water, septic or sewer sanitation, and septic, sewer, or "other improved" sanitation were associated with decreased district-level cholera incidence. The classification model had moderate performance in identifying high cholera incidence areas (cross-validated-AUC 0.81, 95% CI 0.78-0.83) with high negative predictive values (93-100%) indicating the utility of water and sanitation measures for screening out areas that are unlikely to be at high cholera risk. While comprehensive cholera risk assessments must incorporate other data sources (e.g., historical incidence), our results suggest that water and sanitation measures could alone be useful in narrowing the geographic focus for detailed risk assessments.


Assuntos
Cólera , Água , Humanos , Saneamento , Cólera/epidemiologia , Cólera/prevenção & controle , Abastecimento de Água , África Subsaariana/epidemiologia
7.
medRxiv ; 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37461674

RESUMO

Our ability to forecast epidemics more than a few weeks into the future is constrained by the complexity of disease systems, our limited ability to measure the current state of an epidemic, and uncertainties in how human action will affect transmission. Realistic longer-term projections (spanning more than a few weeks) may, however, be possible under defined scenarios that specify the future state of critical epidemic drivers, with the additional benefit that such scenarios can be used to anticipate the comparative effect of control measures. Since December 2020, the U.S. COVID-19 Scenario Modeling Hub (SMH) has convened multiple modeling teams to make 6-month ahead projections of the number of SARS-CoV-2 cases, hospitalizations and deaths. The SMH released nearly 1.8 million national and state-level projections between February 2021 and November 2022. SMH performance varied widely as a function of both scenario validity and model calibration. Scenario assumptions were periodically invalidated by the arrival of unanticipated SARS-CoV-2 variants, but SMH still provided projections on average 22 weeks before changes in assumptions (such as virus transmissibility) invalidated scenarios and their corresponding projections. During these periods, before emergence of a novel variant, a linear opinion pool ensemble of contributed models was consistently more reliable than any single model, and projection interval coverage was near target levels for the most plausible scenarios (e.g., 79% coverage for 95% projection interval). SMH projections were used operationally to guide planning and policy at different stages of the pandemic, illustrating the value of the hub approach for long-term scenario projections.

8.
PLoS Negl Trop Dis ; 17(5): e0010928, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37196011

RESUMO

Kenya has experienced cholera outbreaks since 1971, with the most recent wave beginning in late 2014. Between 2015-2020, 32 of 47 counties reported 30,431 suspected cholera cases. The Global Task Force for Cholera Control (GTFCC) developed a Global Roadmap for Ending Cholera by 2030, which emphasizes the need to target multi-sectoral interventions in priority cholera burden hotspots. This study utilizes the GTFCC's hotspot method to identify hotspots in Kenya at the county and sub-county administrative levels from 2015 through 2020. 32 of 47 (68.1%) counties reported cholera cases during this time while only 149 of 301 (49.5%) sub-counties reported cholera cases. The analysis identifies hotspots based on the mean annual incidence (MAI) over the past five-year period and cholera's persistence in the area. Applying a MAI threshold of 90th percentile and the median persistence at both the county and sub-county levels, we identified 13 high risk sub-counties from 8 counties, including the 3 high risk counties of Garissa, Tana River and Wajir. This demonstrates that several sub-counties are high level hotspots while their counties are not. In addition, when cases reported by county versus sub-county hotspot risk are compared, 1.4 million people overlapped in the areas identified as both high-risk county and high-risk sub-county. However, assuming that finer scale data is more accurate, 1.6 million high risk sub-county people would have been misclassified as medium risk with a county-level analysis. Furthermore, an additional 1.6 million people would have been classified as living in high-risk in a county-level analysis when at the sub-county level, they were medium, low or no-risk sub-counties. This results in 3.2 million people being misclassified when county level analysis is utilized rather than a more-focused sub-county level analysis. This analysis highlights the need for more localized risk analyses to target cholera intervention and prevention efforts towards the populations most vulnerable.


Assuntos
Cólera , Humanos , Cólera/epidemiologia , Cólera/prevenção & controle , Quênia/epidemiologia , Surtos de Doenças/prevenção & controle , Hotspot de Doença
9.
Vaccine ; 41(20): 3189-3195, 2023 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-37069031

RESUMO

Parental refusal and delay of childhood vaccination has increased in recent years in the United States. This phenomenon challenges maintenance of herd immunity and increases the risk of outbreaks of vaccine-preventable diseases. We examine US county-level vaccine refusal for patients under five years of age collected during the period 2012-2015 from an administrative healthcare dataset. We model these data with a Bayesian zero-inflated negative binomial regression model to capture social and political processes that are associated with vaccine refusal, as well as factors that affect our measurement of vaccine refusal. Our work highlights fine-scale socio-demographic characteristics associated with vaccine refusal nationally, finds that spatial clustering in refusal can be explained by such factors, and has the potential to aid in the development of targeted public health strategies for optimizing vaccine uptake.


Assuntos
Vacinação , Vacinas , Humanos , Estados Unidos , Teorema de Bayes , Recusa de Vacinação , Surtos de Doenças
10.
Cell Rep Med ; 4(5): 101022, 2023 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-37105175

RESUMO

Tracking the emergence and spread of pathogen variants is an important component of monitoring infectious disease outbreaks. To that end, accurately estimating the number and prevalence of pathogen variants in a population requires carefully designed surveillance programs. However, current approaches to calculating the number of pathogen samples needed for effective surveillance often do not account for the various processes that can bias which infections are detected and which samples are ultimately characterized as a specific variant. In this article, we introduce a framework that accounts for the logistical and epidemiological processes that may bias variant characterization, and we demonstrate how to use this framework (implemented in a publicly available tool) to calculate the number of sequences needed for surveillance. Our framework is designed to be easy to use while also flexible enough to be adapted to various pathogens and surveillance scenarios.


Assuntos
Surtos de Doenças , Tamanho da Amostra , Viés
11.
Lancet Reg Health Am ; 17: 100398, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36437905

RESUMO

Background: The COVID-19 Scenario Modeling Hub convened nine modeling teams to project the impact of expanding SARS-CoV-2 vaccination to children aged 5-11 years on COVID-19 burden and resilience against variant strains. Methods: Teams contributed state- and national-level weekly projections of cases, hospitalizations, and deaths in the United States from September 12, 2021 to March 12, 2022. Four scenarios covered all combinations of 1) vaccination (or not) of children aged 5-11 years (starting November 1, 2021), and 2) emergence (or not) of a variant more transmissible than the Delta variant (emerging November 15, 2021). Individual team projections were linearly pooled. The effect of childhood vaccination on overall and age-specific outcomes was estimated using meta-analyses. Findings: Assuming that a new variant would not emerge, all-age COVID-19 outcomes were projected to decrease nationally through mid-March 2022. In this setting, vaccination of children 5-11 years old was associated with reductions in projections for all-age cumulative cases (7.2%, mean incidence ratio [IR] 0.928, 95% confidence interval [CI] 0.880-0.977), hospitalizations (8.7%, mean IR 0.913, 95% CI 0.834-0.992), and deaths (9.2%, mean IR 0.908, 95% CI 0.797-1.020) compared with scenarios without childhood vaccination. Vaccine benefits increased for scenarios including a hypothesized more transmissible variant, assuming similar vaccine effectiveness. Projected relative reductions in cumulative outcomes were larger for children than for the entire population. State-level variation was observed. Interpretation: Given the scenario assumptions (defined before the emergence of Omicron), expanding vaccination to children 5-11 years old would provide measurable direct benefits, as well as indirect benefits to the all-age U.S. population, including resilience to more transmissible variants. Funding: Various (see acknowledgments).

13.
Lancet Digit Health ; 4(10): e738-e747, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36150782

RESUMO

Infectious disease modelling can serve as a powerful tool for situational awareness and decision support for policy makers. However, COVID-19 modelling efforts faced many challenges, from poor data quality to changing policy and human behaviour. To extract practical insight from the large body of COVID-19 modelling literature available, we provide a narrative review with a systematic approach that quantitatively assessed prospective, data-driven modelling studies of COVID-19 in the USA. We analysed 136 papers, and focused on the aspects of models that are essential for decision makers. We have documented the forecasting window, methodology, prediction target, datasets used, and geographical resolution for each study. We also found that a large fraction of papers did not evaluate performance (25%), express uncertainty (50%), or state limitations (36%). To remedy some of these identified gaps, we recommend the adoption of the EPIFORGE 2020 model reporting guidelines and creating an information-sharing system that is suitable for fast-paced infectious disease outbreak science.


Assuntos
COVID-19 , COVID-19/epidemiologia , Previsões , Humanos , Estados Unidos/epidemiologia
14.
Elife ; 112022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35726851

RESUMO

In Spring 2021, the highly transmissible SARS-CoV-2 Delta variant began to cause increases in cases, hospitalizations, and deaths in parts of the United States. At the time, with slowed vaccination uptake, this novel variant was expected to increase the risk of pandemic resurgence in the US in summer and fall 2021. As part of the COVID-19 Scenario Modeling Hub, an ensemble of nine mechanistic models produced 6-month scenario projections for July-December 2021 for the United States. These projections estimated substantial resurgences of COVID-19 across the US resulting from the more transmissible Delta variant, projected to occur across most of the US, coinciding with school and business reopening. The scenarios revealed that reaching higher vaccine coverage in July-December 2021 reduced the size and duration of the projected resurgence substantially, with the expected impacts was largely concentrated in a subset of states with lower vaccination coverage. Despite accurate projection of COVID-19 surges occurring and timing, the magnitude was substantially underestimated 2021 by the models compared with the of the reported cases, hospitalizations, and deaths occurring during July-December, highlighting the continued challenges to predict the evolving COVID-19 pandemic. Vaccination uptake remains critical to limiting transmission and disease, particularly in states with lower vaccination coverage. Higher vaccination goals at the onset of the surge of the new variant were estimated to avert over 1.5 million cases and 21,000 deaths, although may have had even greater impacts, considering the underestimated resurgence magnitude from the model.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/epidemiologia , COVID-19/prevenção & controle , Humanos , Pandemias/prevenção & controle , SARS-CoV-2/genética , Estados Unidos/epidemiologia , Vacinação
15.
Int J Infect Dis ; 122: 215-221, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35605949

RESUMO

BACKGROUND: Cholera remains a public health threat but is inequitably distributed across sub-Saharan Africa. Lack of standardized reporting and inconsistent outbreak definitions limit our understanding of cholera outbreak epidemiology. METHODS: From a database of cholera incidence and mortality, we extracted data from sub-Saharan Africa and reconstructed outbreaks of suspected cholera starting in January 2010 to December 2019 based on location-specific average weekly incidence rate thresholds. We then described the distribution of key outbreak metrics. RESULTS: We identified 999 suspected cholera outbreaks in 744 regions across 25 sub-Saharan African countries. The outbreak periods accounted for 1.8 billion person-months (2% of the total during this period) from January 2010 to January 2020. Among 692 outbreaks reported from second-level administrative units (e.g., districts), the median attack rate was 0.8 per 1000 people (interquartile range (IQR), 0.3-2.4 per 1000), the median epidemic duration was 13 weeks (IQR, 8-19), and the median early outbreak reproductive number was 1.8 (range, 1.1-3.5). Larger attack rates were associated with longer times to outbreak peak, longer epidemic durations, and lower case fatality risks. CONCLUSIONS: This study provides a baseline from which the progress toward cholera control and essential statistics to inform outbreak management in sub-Saharan Africa can be monitored.


Assuntos
Cólera , África Subsaariana/epidemiologia , Cólera/epidemiologia , Surtos de Doenças , Humanos , Incidência , Saúde Pública
16.
Lancet Glob Health ; 10(6): e831-e839, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35461521

RESUMO

BACKGROUND: Cholera remains a major threat in sub-Saharan Africa (SSA), where some of the highest case-fatality rates are reported. Knowing in what months and where cholera tends to occur across the continent could aid in improving efforts to eliminate cholera as a public health concern. However, largely due to the absence of unified large-scale datasets, no continent-wide estimates exist. In this study, we aimed to estimate cholera seasonality across SSA and explore the correlation between hydroclimatic variables and cholera seasonality. METHODS: Using the global cholera database of the Global Task Force on Cholera Control, we developed statistical models to synthesise data across spatial and temporal scales to infer the seasonality of excess (defined as incidence higher than the 2010-16 mean incidence rate) suspected cholera occurrence in SSA. We developed a Bayesian statistical model to infer the monthly risk of excess cholera at the first and second administrative levels. Seasonality patterns were then grouped into spatial clusters. Finally, we studied the association between seasonality estimates and hydroclimatic variables (mean monthly fraction of area flooded, mean monthly air temperature, and cumulative monthly precipitation). FINDINGS: 24 (71%) of the 34 countries studied had seasonal patterns of excess cholera risk, corresponding to approximately 86% of the SSA population. 12 (50%) of these 24 countries also had subnational differences in seasonality patterns, with strong differences in seasonality strength between regions. Seasonality patterns clustered into two macroregions (west Africa and the Sahel vs eastern and southern Africa), which were composed of subregional clusters with varying degrees of seasonality. Exploratory association analysis found most consistent and positive correlations between cholera seasonality and precipitation and, to a lesser extent, between cholera seasonality and temperature and flooding. INTERPRETATION: Widespread cholera seasonality in SSA offers opportunities for intervention planning. Further studies are needed to study the association between cholera and climate. FUNDING: US National Aeronautics and Space Administration Applied Sciences Program and the Bill & Melinda Gates Foundation.


Assuntos
Cólera , África Subsaariana/epidemiologia , Teorema de Bayes , Cólera/epidemiologia , Humanos , Incidência , Modelos Estatísticos
17.
medRxiv ; 2022 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-35313593

RESUMO

Background: SARS-CoV-2 vaccination of persons aged 12 years and older has reduced disease burden in the United States. The COVID-19 Scenario Modeling Hub convened multiple modeling teams in September 2021 to project the impact of expanding vaccine administration to children 5-11 years old on anticipated COVID-19 burden and resilience against variant strains. Methods: Nine modeling teams contributed state- and national-level projections for weekly counts of cases, hospitalizations, and deaths in the United States for the period September 12, 2021 to March 12, 2022. Four scenarios covered all combinations of: 1) presence vs. absence of vaccination of children ages 5-11 years starting on November 1, 2021; and 2) continued dominance of the Delta variant vs. emergence of a hypothetical more transmissible variant on November 15, 2021. Individual team projections were combined using linear pooling. The effect of childhood vaccination on overall and age-specific outcomes was estimated by meta-analysis approaches. Findings: Absent a new variant, COVID-19 cases, hospitalizations, and deaths among all ages were projected to decrease nationally through mid-March 2022. Under a set of specific assumptions, models projected that vaccination of children 5-11 years old was associated with reductions in all-age cumulative cases (7.2%, mean incidence ratio [IR] 0.928, 95% confidence interval [CI] 0.880-0.977), hospitalizations (8.7%, mean IR 0.913, 95% CI 0.834-0.992), and deaths (9.2%, mean IR 0.908, 95% CI 0.797-1.020) compared with scenarios where children were not vaccinated. This projected effect of vaccinating children 5-11 years old increased in the presence of a more transmissible variant, assuming no change in vaccine effectiveness by variant. Larger relative reductions in cumulative cases, hospitalizations, and deaths were observed for children than for the entire U.S. population. Substantial state-level variation was projected in epidemic trajectories, vaccine benefits, and variant impacts. Conclusions: Results from this multi-model aggregation study suggest that, under a specific set of scenario assumptions, expanding vaccination to children 5-11 years old would provide measurable direct benefits to this age group and indirect benefits to the all-age U.S. population, including resilience to more transmissible variants.

18.
PLOS Digit Health ; 1(6): e0000039, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36812505

RESUMO

Traditional disease surveillance is increasingly being complemented by data from non-traditional sources like medical claims, electronic health records, and participatory syndromic data platforms. As non-traditional data are often collected at the individual-level and are convenience samples from a population, choices must be made on the aggregation of these data for epidemiological inference. Our study seeks to understand the influence of spatial aggregation choice on our understanding of disease spread with a case study of influenza-like illness in the United States. Using U.S. medical claims data from 2002 to 2009, we examined the epidemic source location, onset and peak season timing, and epidemic duration of influenza seasons for data aggregated to the county and state scales. We also compared spatial autocorrelation and tested the relative magnitude of spatial aggregation differences between onset and peak measures of disease burden. We found discrepancies in the inferred epidemic source locations and estimated influenza season onsets and peaks when comparing county and state-level data. Spatial autocorrelation was detected across more expansive geographic ranges during the peak season as compared to the early flu season, and there were greater spatial aggregation differences in early season measures as well. Epidemiological inferences are more sensitive to spatial scale early on during U.S. influenza seasons, when there is greater heterogeneity in timing, intensity, and geographic spread of the epidemics. Users of non-traditional disease surveillance should carefully consider how to extract accurate disease signals from finer-scaled data for early use in disease outbreaks.

19.
PLOS Glob Public Health ; 2(5): e0000237, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36962205

RESUMO

Non-pharmaceutical interventions have been widely employed to control the COVID-19 pandemic. Their associated effect on SARS-CoV-2 transmission have however been unequally studied across regions. Few studies have focused on the Gulf states despite their potential role for global pandemic spread, in particular in the Kingdom of Saudi Arabia through religious pilgrimages. We study the association between NPIs and SARS-CoV-2 transmission in the Kingdom of Saudi Arabia during the first pandemic wave between March and October 2020. We infer associations between NPIs introduction and lifting through a spatial SEIR-type model that allows for inferences of region-specific changes in transmission intensity. We find that reductions in transmission were associated with NPIs implemented shortly after the first reported case including Isolate and Test with School Closure (region-level mean estimates of the reduction in R0 ranged from 25-41%), Curfew (20-70% reduction), and Lockdown (50-60% reduction), although uncertainty in the estimates was high, particularly for the Isolate and Test with School Closure NPI (95% Credible Intervals from 1% to 73% across regions). Transmission was found to increase progressively in most regions during the last part of NPI relaxation phases. These results can help informing the policy makers in the planning of NPI scenarios as the pandemic evolves with the emergence of SARS-CoV-2 variants and the availability of vaccination.

20.
medRxiv ; 2021 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-34494030

RESUMO

WHAT IS ALREADY KNOWN ABOUT THIS TOPIC?: The highly transmissible SARS-CoV-2 Delta variant has begun to cause increases in cases, hospitalizations, and deaths in parts of the United States. With slowed vaccination uptake, this novel variant is expected to increase the risk of pandemic resurgence in the US in July-December 2021. WHAT IS ADDED BY THIS REPORT?: Data from nine mechanistic models project substantial resurgences of COVID-19 across the US resulting from the more transmissible Delta variant. These resurgences, which have now been observed in most states, were projected to occur across most of the US, coinciding with school and business reopening. Reaching higher vaccine coverage in July-December 2021 reduces the size and duration of the projected resurgence substantially. The expected impact of the outbreak is largely concentrated in a subset of states with lower vaccination coverage. WHAT ARE THE IMPLICATIONS FOR PUBLIC HEALTH PRACTICE?: Renewed efforts to increase vaccination uptake are critical to limiting transmission and disease, particularly in states with lower current vaccination coverage. Reaching higher vaccination goals in the coming months can potentially avert 1.5 million cases and 21,000 deaths and improve the ability to safely resume social contacts, and educational and business activities. Continued or renewed non-pharmaceutical interventions, including masking, can also help limit transmission, particularly as schools and businesses reopen.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...