Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
Trends Biochem Sci ; 49(1): 79-92, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38036336

RESUMO

Humans and other mammals inhabit hypoxic high-altitude locales. In many of these species, genes under positive selection include ones in the Hypoxia Inducible Factor (HIF) pathway. One is PHD2 (EGLN1), which encodes for a key oxygen sensor. Another is HIF2A (EPAS1), which encodes for a PHD2-regulated transcription factor. Recent studies have provided insights into mechanisms for these high-altitude alleles. These studies have (i) shown that selection can occur on nonconserved, unstructured regions of proteins, (ii) revealed that high altitude-associated amino acid substitutions can have differential effects on protein-protein interactions, (iii) provided evidence for convergent evolution by different molecular mechanisms, and (iv) suggested that mutations in different genes can complement one another to produce a set of adaptive phenotypes.


Assuntos
Adaptação Fisiológica , Altitude , Humanos , Animais , Adaptação Fisiológica/genética , Hipóxia/genética , Fenótipo , Regulação da Expressão Gênica , Prolina Dioxigenases do Fator Induzível por Hipóxia/genética , Prolina Dioxigenases do Fator Induzível por Hipóxia/metabolismo , Mamíferos/genética
2.
Mol Biol Evol ; 40(7)2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37463421

RESUMO

For over 10,000 years, Andeans have resided at high altitude where the partial pressure of oxygen challenges human survival. Recent studies have provided evidence for positive selection acting in Andeans on the HIF2A (also known as EPAS1) locus, which encodes for a central transcription factor of the hypoxia-inducible factor pathway. However, the precise mechanism by which this allele might lead to altitude-adaptive phenotypes, if any, is unknown. By analyzing whole genome sequencing data from 46 high-coverage Peruvian Andean genomes, we confirm evidence for positive selection acting on HIF2A and a unique pattern of variation surrounding the Andean-specific single nucleotide variant (SNV), rs570553380, which encodes for an H194R amino acid substitution in HIF-2α. Genotyping the Andean-associated SNV rs570553380 in a group of 299 Peruvian Andeans from Cerro de Pasco, Peru (4,338 m), reveals a positive association with increased fraction of exhaled nitric oxide, a marker of nitric oxide biosynthesis. In vitro assays show that the H194R mutation impairs binding of HIF-2α to its heterodimeric partner, aryl hydrocarbon receptor nuclear translocator. A knockin mouse model bearing the H194R mutation in the Hif2a gene displays decreased levels of hypoxia-induced pulmonary Endothelin-1 transcripts and protection against hypoxia-induced pulmonary hypertension. We conclude the Andean H194R HIF2A allele is a hypomorphic (partial loss of function) allele.


Assuntos
Altitude , Óxido Nítrico , Animais , Humanos , Camundongos , Adaptação Fisiológica/genética , Alelos , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Hipóxia/genética
3.
EMBO J ; 41(22): e112059, 2022 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-36219563

RESUMO

Prolyl hydroxylase domain protein 2 (PHD2)-catalyzed modification of hypoxia-inducible factor (HIF)-α is a key event in oxygen sensing. We previously showed that the zinc finger of PHD2 binds to a Pro-Xaa-Leu-Glu (PXLE) motif. Here, we show that the zinc finger binds to this motif in the ribosomal chaperone nascent polypeptide complex-α (NACA). This recruits PHD2 to the translation machinery to cotranslationally modify HIF-α. Importantly, this cotranslational modification is enhanced by a translational pause sequence in HIF-α. Mice with a knock-in Naca gene mutation that abolishes the PXLE motif display erythrocytosis, a reflection of HIF pathway dysregulation. In addition, human erythrocytosis-associated mutations in the zinc finger of PHD2 ablate interaction with NACA. Tibetans, who have adapted to the hypoxia of high altitude, harbor a PHD2 variant that we previously showed displays a defect in zinc finger binding to p23, a PXLE-containing HSP90 cochaperone. We show here that Tibetan PHD2 maintains interaction with NACA, thereby showing differential interactions with PXLE-containing proteins and providing an explanation for why Tibetans are not predisposed to erythrocytosis.


Assuntos
Policitemia , Humanos , Camundongos , Animais , Policitemia/genética , Policitemia/metabolismo , Prolina Dioxigenases do Fator Induzível por Hipóxia/genética , Prolina Dioxigenases do Fator Induzível por Hipóxia/metabolismo , Pró-Colágeno-Prolina Dioxigenase/química , Dedos de Zinco , Hipóxia , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo
4.
iScience ; 24(4): 102246, 2021 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-33796838

RESUMO

Heterozygous gain-of-function (GOF) mutations of hypoxia-inducible factor 2α (HIF2A), a key hypoxia-sensing regulator, are associated with erythrocytosis, thrombosis, and vascular complications that account for morbidity and mortality of patients. We demonstrated that the vascular pathology of HIF2A GOF mutations is independent of erythrocytosis. We generated HIF2A GOF-induced pluripotent stem cells (iPSCs) and differentiated them into endothelial cells (ECs) and smooth muscle cells (SMCs). Unexpectedly, HIF2A-SMCs, but not HIF2A-ECs, were phenotypically aberrant, more contractile, stiffer, and overexpressed endothelin 1 (EDN1), myosin heavy chain, elastin, and fibrillin. EDN1 inhibition and knockdown of EDN1-receptors both reduced HIF2-SMC stiffness. Hif2A GOF heterozygous mice displayed pulmonary hypertension, had SMCs with more disorganized stress fibers and higher stiffness in their pulmonary arterial smooth muscle cells, and had more deformable pulmonary arteries compared with wild-type mice. Our findings suggest that targeting these vascular aberrations could benefit patients with HIF2A GOF and conditions of augmented hypoxia signaling.

5.
J Biol Chem ; 296: 100461, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33639161

RESUMO

Numerous mammalian species have adapted to the chronic hypoxia of high altitude. Recent genomic studies have identified evidence for natural selection of genes and associated genetic changes in these species. A major gap in our knowledge is an understanding of the functional significance, if any, of these changes. Deer mice (Peromyscus maniculatus) live at both low and high altitudes in North America, providing an opportunity to identify functionally important genetic changes. High-altitude deer mice show evidence of natural selection on the Epas1 gene, which encodes for hypoxia-inducible factor-2α (Hif-2α), a central transcription factor of the hypoxia-inducible factor pathway. An SNP encoding for a T755M change in the Hif-2α protein is highly enriched in high-altitude deer mice, but its functional significance is unknown. Here, using coimmunoprecipitation and transcriptional activity assays, we show that the T755M mutation produces a defect in the interaction of Hif-2α with the transcriptional coactivator CREB-binding protein. This results in a loss of function because of decreased transcriptional activity. Intriguingly, the effect of this mutation depends on the amino acid context. Interchanges between methionine and threonine at the corresponding position in house mouse (Mus musculus) Hif-2α are without effects on CREB-binding protein binding. Furthermore, transfer of a set of deer mouse-specific Hif-2α amino acids to house mouse Hif-2α is sufficient to confer sensitivity of house mouse Hif-2α to the T755M substitution. These findings provide insight into high-altitude adaptation in deer mice and evolution at the Epas1 locus.


Assuntos
Adaptação Fisiológica , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proteína de Ligação a CREB/metabolismo , Mutação de Sentido Incorreto , Polimorfismo de Nucleotídeo Único , Substituição de Aminoácidos , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Proteína de Ligação a CREB/genética , Camundongos , Peromyscus
7.
Proc Natl Acad Sci U S A ; 117(22): 12230-12238, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32414920

RESUMO

Tibetans have adapted to the chronic hypoxia of high altitude and display a distinctive suite of physiologic adaptations, including augmented hypoxic ventilatory response and resistance to pulmonary hypertension. Genome-wide studies have consistently identified compelling genetic signatures of natural selection in two genes of the Hypoxia Inducible Factor pathway, PHD2 and HIF2A The product of the former induces the degradation of the product of the latter. Key issues regarding Tibetan PHD2 are whether it is a gain-of-function or loss-of-function allele, and how it might contribute to high-altitude adaptation. Tibetan PHD2 possesses two amino acid changes, D4E and C127S. We previously showed that in vitro, Tibetan PHD2 is defective in its interaction with p23, a cochaperone of the HSP90 pathway, and we proposed that Tibetan PHD2 is a loss-of-function allele. Here, we report that additional PHD2 mutations at or near Asp-4 or Cys-127 impair interaction with p23 in vitro. We find that mice with the Tibetan Phd2 allele display augmented hypoxic ventilatory response, supporting this loss-of-function proposal. This is phenocopied by mice with a mutation in p23 that abrogates the PHD2:p23 interaction. Hif2a haploinsufficiency, but not the Tibetan Phd2 allele, ameliorates hypoxia-induced increases in right ventricular systolic pressure. The Tibetan Phd2 allele is not associated with hemoglobin levels in mice. We propose that Tibetans possess genetic alterations that both activate and inhibit selective outputs of the HIF pathway to facilitate successful adaptation to the chronic hypoxia of high altitude.


Assuntos
Adaptação Fisiológica , Proteínas de Ligação a DNA/metabolismo , Prolina Dioxigenases do Fator Induzível por Hipóxia/genética , Prolina Dioxigenases do Fator Induzível por Hipóxia/metabolismo , Prolina Dioxigenases do Fator Induzível por Hipóxia/fisiologia , Hipóxia/fisiopatologia , Mutação com Perda de Função , Alelos , Altitude , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proteínas de Ligação a DNA/genética , Humanos , Camundongos , Camundongos Knockout , Fenótipo , Seleção Genética , Tibet
8.
Hypoxia (Auckl) ; 7: 81-86, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31853455

RESUMO

BACKGROUND: Loss of function mutations in the EGLN1 gene are a cause of erythrocytosis. EGLN1 encodes for prolyl hydroxylase domain protein 2 (PHD2). PHD2 hydroxylates and downregulates hypoxia-inducible factor-2α (HIF-2α), a transcription factor that regulates erythropoiesis. While the large majority of erythrocytosis-associated EGLN1 mutations occur within its catalytic domain, rare mutations reside in its zinc finger. This zinc finger binds a Pro-Xaa-Leu-Glu motif in p23, an HSP90 cochaperone that facilitates hydroxylation of HIF-α, an HSP90 client. Essentially nothing is known about the specific interactions between the PHD2 zinc finger and p23. RESULTS: Here, we characterize an erythrocytosis-associated mutation in the zinc finger, K55N, that abolishes interaction with p23. We provide evidence that the affected residue, Lys-55, interacts with Asp-152 of p23. We also present results that indicate that PHD2 Arg-32 interacts with p23 Glu-160. CONCLUSION: These studies not only reinforce the importance of the PHD2 zinc finger in the control of erythropoiesis, but also lead to a model in which a peptide motif in p23 binds in a specific orientation to a predicted groove in the zinc finger of PHD2.

9.
Proc Natl Acad Sci U S A ; 116(48): 24006-24011, 2019 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-31712437

RESUMO

Highland native Andeans have resided at altitude for millennia. They display high aerobic capacity (VO2max) at altitude, which may be a reflection of genetic adaptation to hypoxia. Previous genomewide (GW) scans for natural selection have nominated Egl-9 homolog 1 gene (EGLN1) as a candidate gene. The encoded protein, EGLN1/PHD2, is an O2 sensor that controls levels of the Hypoxia Inducible Factor-α (HIF-α), which regulates the cellular response to hypoxia. From GW association and analysis of covariance performed on a total sample of 429 Peruvian Quechua and 94 US lowland referents, we identified 5 EGLN1 SNPs associated with higher VO2max (L⋅min-1 and mL⋅min-1⋅kg-1) in hypoxia (rs1769793, rs2064766, rs2437150, rs2491403, rs479200). For 4 of these SNPs, Quechua had the highest frequency of the advantageous (high VO2max) allele compared with 25 diverse lowland comparison populations from the 1000 Genomes Project. Genotype effects were substantial, with high versus low VO2max genotype categories differing by ∼11% (e.g., for rs1769793 SNP genotype TT = 34.2 mL⋅min-1⋅kg-1 vs. CC = 30.5 mL⋅min-1⋅kg-1). To guard against spurious association, we controlled for population stratification. Findings were replicated for EGLN1 SNP rs1769793 in an independent Andean sample collected in 2002. These findings contextualize previous reports of natural selection at EGLN1 in Andeans, and support the hypothesis that natural selection has increased the frequency of an EGLN1 causal variant that enhances O2 delivery or use during exercise at altitude in Peruvian Quechua.


Assuntos
Altitude , Prolina Dioxigenases do Fator Induzível por Hipóxia/fisiologia , Hipóxia/genética , Oxigênio/metabolismo , Polimorfismo de Nucleotídeo Único , Aclimatação , Adaptação Fisiológica , Feminino , Frequência do Gene , Genótipo , Humanos , Prolina Dioxigenases do Fator Induzível por Hipóxia/genética , Prolina Dioxigenases do Fator Induzível por Hipóxia/metabolismo , Povos Indígenas , Masculino , Peru , Seleção Genética , Estresse Fisiológico
10.
Cell Metab ; 30(4): 626-627, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31577931

RESUMO

The discovery of prolyl hydroxylase domain proteins (PHDs) as key enzymes in the hypoxia inducible factor (HIF) pathway has been followed by reports of a multitude of non-HIF substrates of PHD. Reporting in eLife, Cockman et al. (2019) find a surprising lack of detectable PHD activity toward any of them.


Assuntos
Repetição de Anquirina , Proteômica , Humanos , Hidroxilação , Hipóxia , Pró-Colágeno-Prolina Dioxigenase
11.
Blood Rev ; 37: 100590, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31350093

RESUMO

Identification of the underlying defects in congenital erythrocytosis has provided mechanistic insights into the regulation of erythropoiesis and oxygen homeostasis. The Hypoxia Inducible Factor (HIF) pathway plays a key role in this regard. In this pathway, an enzyme, Prolyl Hydroxylase Domain protein 2 (PHD2), constitutively prolyl hydroxylates HIF-2α, thereby targeting HIF-2α for degradation by the von Hippel Lindau (VHL) tumor suppressor protein. Under hypoxia, this modification is attenuated, resulting in the stabilization of HIF-2α and transcriptional activation of the erythropoietin (EPO) gene. Circulating EPO then binds to the EPO receptor (EPOR) on red cell progenitors in the bone marrow, leading to expansion of red cell mass. Loss of function mutations in PHD2 and VHL, as well as gain of function mutations in HIF-2α and EPOR, are well established causes of erythrocytosis. Here, we highlight recent developments that show that the study of this condition is still evolving. Specifically, novel mutations have been identified that either change amino acids in the zinc finger domain of PHD2 or alter splicing of the VHL gene. In addition, continued study of HIF-2α mutations has revealed a distinctive genotype-phenotype correlation. Finally, novel mutations have recently been identified in the EPO gene itself. Thus, the cascade of genes that at a molecular level leads to EPO action, namely PHD2 - > HIF2A - > VHL - > EPO - > EPOR, are all mutational targets in congenital erythrocytosis.


Assuntos
Eritropoetina/genética , Fator 1 Induzível por Hipóxia/genética , Policitemia/metabolismo , Humanos , Mutação
12.
Nat Commun ; 10(1): 1211, 2019 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-30858377

RESUMO

The original version of this Article contained an error in the spelling of the author Brett L. Ecker, which was incorrectly given as Brett Ecker. This has now been corrected in both the PDF and HTML versions of the Article.

13.
J Clin Invest ; 129(1): 72-74, 2019 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-30530987

RESUMO

Hepcidin is the master regulator of iron metabolism. It plays a key role in the regulation of iron transport across the duodenal epithelium, which in turn is dependent on the oxygen-regulated transcription factor hypoxia-inducible factor 2α (HIF-2α). In this issue of the JCI, Schwartz and colleagues show that duodenal HIF-2α is itself regulated by hepcidin, thereby indicating that this transcription factor is not only regulated by oxygen, but also by iron. This work indicates that the crosstalk between liver hepcidin and intestinal HIF-2α plays an important role during iron overload, systemic iron deficiency, and anemia.


Assuntos
Anemia Ferropriva , Ferro , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Hepcidinas , Humanos , Fígado , Oxigênio
14.
Nat Commun ; 9(1): 5426, 2018 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-30575721

RESUMO

Prolyl hydroxylase domain protein 2 (PHD2) is a well-known master oxygen sensor. However, the role of PHD2 in tumor initiation remains controversial. We find that during the transition of human nevi to melanoma, the expression of PHD2 protein is significantly decreased and lower expression PHD2 in melanoma is associated with worse clinical outcome. Knockdown of PHD2 leads to elevated Akt phosphorylation in human melanocytes. Mice with conditional melanocyte-specific expression of Phd2lox/lox (Tyr::CreER;Phd2lox/lox) fail to develop pigmented lesions. However, deletion of Phd2 in combination with expression of BRafV600E in melanocytes (Tyr::CreER;Phd2lox/lox;BRafCA) leads to the development of melanoma with 100% penetrance and frequent lymph node metastasis. Analysis of tumor tissues using reverse phase protein arrays demonstrates that Phd2 deletion activates the AKT-mTOR-S6 signaling axis in the recovered tumors. These data indicate that PHD2 is capable of suppressing tumor initiation largely mediated through inhibiting of the Akt-mTOR signaling pathway in the melanocyte lineage.


Assuntos
Prolina Dioxigenases do Fator Induzível por Hipóxia/deficiência , Melanócitos/metabolismo , Melanoma/etiologia , Proteínas Proto-Oncogênicas B-raf/genética , Animais , Linhagem Celular Tumoral , Humanos , Prolina Dioxigenases do Fator Induzível por Hipóxia/genética , Melanoma/metabolismo , Camundongos Transgênicos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/metabolismo
16.
Circ Genom Precis Med ; 11(4): e002178, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29654098

RESUMO

The National Institutes of Health have made substantial investments in genomic studies and technologies to identify DNA sequence variants associated with human disease phenotypes. The National Heart, Lung, and Blood Institute has been at the forefront of these commitments to ascertain genetic variation associated with heart, lung, blood, and sleep diseases and related clinical traits. Genome-wide association studies, exome- and genome-sequencing studies, and exome-genotyping studies of the National Heart, Lung, and Blood Institute-funded epidemiological and clinical case-control studies are identifying large numbers of genetic variants associated with heart, lung, blood, and sleep phenotypes. However, investigators face challenges in identification of genomic variants that are functionally disruptive among the myriad of computationally implicated variants. Studies to define mechanisms of genetic disruption encoded by computationally identified genomic variants require reproducible, adaptable, and inexpensive methods to screen candidate variant and gene function. High-throughput strategies will permit a tiered variant discovery and genetic mechanism approach that begins with rapid functional screening of a large number of computationally implicated variants and genes for discovery of those that merit mechanistic investigation. As such, improved variant-to-gene and gene-to-function screens-and adequate support for such studies-are critical to accelerating the translation of genomic findings. In this White Paper, we outline the variety of novel technologies, assays, and model systems that are making such screens faster, cheaper, and more accurate, referencing published work and ongoing work supported by the National Heart, Lung, and Blood Institute's R21/R33 Functional Assays to Screen Genomic Hits program. We discuss priorities that can accelerate the impressive but incomplete progress represented by big data genomic research.


Assuntos
Variação Genética , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Animais , Células Cultivadas , Difusão de Inovações , Previsões , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Genômica/tendências , Sequenciamento de Nucleotídeos em Larga Escala/tendências , Humanos , Modelos Animais , National Heart, Lung, and Blood Institute (U.S.) , Fenótipo , Reprodutibilidade dos Testes , Fatores de Risco , Estados Unidos , Fluxo de Trabalho
17.
Chemosphere ; 186: 438-445, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28806671

RESUMO

PM2.5 samples were collected at six indoor public places that contained dedicated smoking lounges. Samples were taken in the smoking lounges, at two indoor locations outside of the lounges, and in outdoor air near the venues. Organic carbon (OC), elemental carbon (EC), and non-polar organic compounds including polycyclic aromatic hydrocarbons (PAHs), n-alkanes (n-C16 to n-C40), iso/anteiso-alkanes (C29 to C33), hopanes and phthalate esters (PAEs) were quantified. Average PM2.5 levels of 170.2 ± 85.9 µg/m3 in the lounges exceeded limits of 25 µg/m3 set by World Health Organization (WHO); these levels were 5.4 and 3.9 times higher than those indoors and outdoors, respectively. High ratios of OC to PM2.5, OC to EC, and PAHs diagnostic ratios in the lounges indicated contributions from environmental tobacco smoke (ETS). The maximum carbon number (Cmax) and carbon preference indices (CPI) for n-alkanes showed ETS transport from the enclosed lounges to nearby indoor non-smoking areas. Iso/anteiso-alkanes in the lounges were 876.5 ng/m3, ∼80 times higher than outdoor levels. 17α(H)-21ß(H),30-norhopane and 17α(H)-21ß(H),(22R)-homohopane were much higher in the lounges than outdoor air, but they cannot be directly attributed to ETS. Estimated carcinogenic risks of PAHs in the lounges exceeded the acceptable level of 10- 6.


Assuntos
Poluentes Atmosféricos/análise , Poluição do Ar em Ambientes Fechados/análise , Monitoramento Ambiental/métodos , Material Particulado/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Poluentes Atmosféricos/efeitos adversos , Poluição do Ar em Ambientes Fechados/efeitos adversos , Alcanos/análise , Carbono/análise , China , Humanos , Tamanho da Partícula , Material Particulado/efeitos adversos , Ácidos Ftálicos/análise , Hidrocarbonetos Policíclicos Aromáticos/efeitos adversos , Medição de Risco , Poluição por Fumaça de Tabaco/efeitos adversos , Poluição por Fumaça de Tabaco/análise
18.
Chembiochem ; 17(24): 2316-2323, 2016 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-27770548

RESUMO

The prolyl hydroxylase domain (PHD) protein:hypoxia inducible factor (HIF) pathway is the main pathway by which changes in oxygen concentration are transduced to changes in gene expression. In mammals, there are three PHD paralogues, and PHD2 has emerged as a particularly critical one for regulating HIF target genes such as erythropoietin (EPO), which controls red cell mass and hematocrit. PHD2 is distinctive among the three PHDs in that it contains an N-terminal MYND-type zinc finger. We have proposed that this zinc finger binds a Pro-Xaa-Leu-Glu (PXLE) motif found in proteins of the HSP90 pathway to facilitate HIF-α hydroxylation. Targeting this motif could provide a means of specifically inhibiting this PHD isoform. Here, we screened a library of chemical compounds for their capacity to inhibit the zinc finger of PHD2. We identified compounds that, in vitro, can inhibit PHD2 binding to a PXLE-containing peptide and induce activation of HIF. Injection of one of these compounds into mice induces an increase in hematocrit. This study offers proof of principle that inhibition of the zinc finger of PHD2 can provide a means of selectively targeting PHD2 to activate the HIF pathway.


Assuntos
Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Prolina Dioxigenases do Fator Induzível por Hipóxia/metabolismo , Motivos de Aminoácidos , Animais , Sistemas CRISPR-Cas/genética , Domínio Catalítico , Eritropoetina/sangue , Eritropoetina/genética , Eritropoetina/metabolismo , Técnicas de Introdução de Genes , Proteínas de Choque Térmico HSP90/química , Proteínas de Choque Térmico HSP90/metabolismo , Hematócrito , Humanos , Hidroxilação , Prolina Dioxigenases do Fator Induzível por Hipóxia/antagonistas & inibidores , Prolina Dioxigenases do Fator Induzível por Hipóxia/genética , Camundongos , Camundongos Endogâmicos C57BL , Ligação Proteica , RNA Mensageiro/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/metabolismo , Dedos de Zinco
19.
Mol Cell Biol ; 36(18): 2328-43, 2016 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-27325674

RESUMO

Prolyl hydroxylase domain protein 2 (PHD2) (also known as EGLN1) is a key oxygen sensor in mammals that posttranslationally modifies hypoxia-inducible factor α (HIF-α) and targets it for degradation. In addition to its catalytic domain, PHD2 contains an evolutionarily conserved zinc finger domain, which we have previously proposed recruits PHD2 to the HSP90 pathway to promote HIF-α hydroxylation. Here, we provide evidence that this recruitment is critical both in vitro and in vivo We show that in vitro, the zinc finger can function as an autonomous recruitment domain to facilitate interaction with HIF-α. In vivo, ablation of zinc finger function by a C36S/C42S Egln1 knock-in mutation results in upregulation of the erythropoietin gene, erythrocytosis, and augmented hypoxic ventilatory response, all hallmarks of Egln1 loss of function and HIF stabilization. Hence, the zinc finger ordinarily performs a critical positive regulatory function. Intriguingly, the function of this zinc finger is impaired in high-altitude-adapted Tibetans, suggesting that their adaptation to high altitude may, in part, be due to a loss-of-function EGLN1 allele. Thus, these findings have important implications for understanding both the molecular mechanism of the hypoxic response and human adaptation to high altitude.


Assuntos
Proteínas de Choque Térmico HSP90/metabolismo , Prolina Dioxigenases do Fator Induzível por Hipóxia/química , Prolina Dioxigenases do Fator Induzível por Hipóxia/metabolismo , Hipóxia/metabolismo , Policitemia/genética , Fatores de Transcrição/metabolismo , Adaptação Fisiológica , Animais , Domínio Catalítico , Células Cultivadas , Técnicas de Inativação de Genes , Humanos , Hidroxilação , Prolina Dioxigenases do Fator Induzível por Hipóxia/genética , Camundongos , Transdução de Sinais , Tibet , Dedos de Zinco
20.
Radiology ; 276(3): 922-7, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26302393

RESUMO

History A 24-year-old woman presented to the emergency department with a history of acute urinary retention, gross hematuria, and left flank pain for 2 days. Past history was unrevealing. Her last menstrual period occurred 2 weeks prior to presentation. At physical examination, she had a temperature of 38.4°C. A palpable mass was noted in the suprapubic region, and a second mass was palpated in the left upper quadrant. Blood work revealed a hemoglobin level of 4.7 g/dL (normal range, 11.5-15.5 g/dL). Her coagulation profile and white blood cell count were within normal limits. Ultrasonography (US) of the abdomen and pelvis was performed and was followed by contrast material-enhanced (80 mL of iopamidol) computed tomography (CT) of the chest, abdomen, and pelvis. Magnetic resonance (MR) imaging of the abdomen and pelvis also was performed.


Assuntos
Leiomiomatose/diagnóstico , Neoplasias Cutâneas/diagnóstico , Neoplasias Uterinas/diagnóstico , Feminino , Humanos , Síndromes Neoplásicas Hereditárias , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...