Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ScientificWorldJournal ; 2018: 6218430, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29686587

RESUMO

Sophorae Radix (Sophora flavescens Aiton) has long been used in traditional medicine in East Asia due to the various biological activities of its secondary metabolites. Endogenous contents of phenolic compounds (phenolic acid, flavonol, and isoflavone) and the main bioactive compounds of Sophorae Radix were analyzed based on the qualitative HPLC analysis and evaluated in different organs and at different developmental stages. In total, 11 compounds were detected, and the composition of the roots and aerial parts (leaves, stems, and flowers) was significantly different. trans-Cinnamic acid and p-coumaric acid were observed only in the aerial parts. Large amounts of rutin and maackiain were detected in the roots. Four phenolic acid compounds (benzoic acid, caffeic acid, ferulic acid, and chlorogenic acid) and four flavonol compounds (kaempferol, catechin hydrate, epicatechin, and rutin) were higher in aerial parts than in roots. To identify putative genes involved in phenolic compounds biosynthesis, a total of 41 transcripts were investigated. Expression patterns of these selected genes, as well as the multiple isoforms for the genes, varied by organ and developmental stage, implying that they are involved in the biosynthesis of various phenolic compounds both spatially and temporally.


Assuntos
Genes de Plantas , Fenóis/metabolismo , Sophora/genética , Sophora/metabolismo , Vias Biossintéticas/genética , Cromatografia Líquida de Alta Pressão , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Especificidade de Órgãos/genética , Fenóis/química , Compostos Fitoquímicos/química , Extratos Vegetais , Sophora/química , Transcriptoma
2.
Plant Physiol Biochem ; 117: 24-33, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28587990

RESUMO

ß-carotene, a carotenoid that plays a key photo-protective role in plants is converted into zeaxanthin by ß-carotene hydroxylase (CHY-ß). Previous work showed that down-regulation of IbCHY-ß by RNA interference (RNAi) results in higher levels of ß-carotene and total carotenoids, as well as salt stress tolerance, in cultured transgenic sweetpotato cells. In this study, we introduced the RNAi-IbCHY-ß construct into a white-fleshed sweetpotato cultivar (cv. Yulmi) by Agrobacterium-mediated transformation. Among the 13 resultant transgenic sweetpotato plants (referred to as RC plants), three lines were selected for further characterization on the basis of IbCHY-ß transcript levels. The RC plants had orange flesh, total carotenoid and ß-carotene contents in storage roots were 2-fold and 16-fold higher, respectively, than those of non-transgenic (NT) plants. Unlike storage roots, total carotenoid and ß-carotene levels in the leaves of RC plants were slightly increased compared to NT plants. The leaves of RC plants also exhibited tolerance to methyl viologen (MV)-mediated oxidative stress, which was associated with higher 2,2-diphenyl-1- picrylhydrazyl (DPPH) radical-scavenging activity. In addition, RC plants maintained higher levels of chlorophyll and higher photosystem II efficiency than NT plants after 250 mM NaCl stress. Yield of storage roots did not differ significantly between RC and NT plants. These observations suggest that RC plants might be useful as a nutritious and environmental stress-tolerant crop on marginal lands around the world.


Assuntos
Ipomoea batatas/enzimologia , Ipomoea batatas/metabolismo , Oxigenases de Função Mista/metabolismo , beta Caroteno/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/genética , Ipomoea batatas/efeitos dos fármacos , Oxigenases de Função Mista/genética , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/genética , Paraquat/farmacologia , Plantas Geneticamente Modificadas/efeitos dos fármacos , Plantas Geneticamente Modificadas/enzimologia , Plantas Geneticamente Modificadas/metabolismo , Tolerância ao Sal/genética , Cloreto de Sódio/farmacologia
3.
Front Plant Sci ; 8: 989, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28642783

RESUMO

The Orange (Or) protein regulates carotenoid biosynthesis and environmental stress in plants. Previously, we reported that overexpression of the sweetpotato [Ipomoea batatas (L.) Lam] Or gene (IbOr) in transgenic Arabidopsis (referred to as IbOr-OX/At) increased the efficiency of photosystem II (PSII) and chlorophyll content after heat shock. However, little is known about the role of IbOr in PSII-mediated protection against abiotic stress. In this study, comparative proteomics revealed that expression of PsbP (an extrinsic subunit of PSII) is up-regulated in heat-treated IbOr-OX/At plants. We then identified and functionally characterized the PsbP-like gene (IbPsbP) from sweetpotato. IbPsbP is predominantly localized in chloroplast, and its transcripts are tissue-specifically expressed and up-regulated in response to abiotic stress. In addition, IbOr interacts with IbPsbP and protects it from heat-induced denaturation, consistent with the observation that transgenic sweetpotato overexpressing IbOr maintained higher PSII efficiency and chlorophyll content upon exposure to heat stress. These results indicate that IbOr can protect plants from environmental stress not only by controlling carotenoid biosynthesis but also by directly stabilizing PSII.

4.
Breed Sci ; 67(1): 27-34, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28465665

RESUMO

Sweetpotato [Ipomoea batatas (L.) Lam], which contains high levels of antioxidants such as ascorbate and carotenoids in its storage root, is one of the healthiest foods, as well as one of the best starch crops for growth on marginal lands. In plants, carotenoid pigments are involved in light harvesting for photosynthesis and are also essential for photo-protection against excess light. As dietary antioxidants in humans, these compounds benefit health by alleviating aging-related diseases. The storage root of sweetpotato is a good source of both carotenoids and carbohydrates for human consumption. Therefore, metabolic engineering of sweetpotato to increase the content of useful carotenoids represents an important agricultural goal. This effort has been facilitated by cloning of most of the carotenoid biosynthetic genes, as well as the Orange gene involved in carotenoid accumulation. In this review, we describe our current understanding of the regulation of biosynthesis, accumulation and catabolism of carotenoids in sweetpotato. A deeper understanding of these topics should contribute to development of new sweetpotato cultivars with higher levels of nutritional carotenoids and abiotic stress tolerance.

5.
Plant Biotechnol J ; 15(3): 331-343, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27565626

RESUMO

The flowering time regulator GIGANTEA (GI) connects networks involved in developmental stage transitions and environmental stress responses in Arabidopsis. However, little is known about the role of GI in growth, development and responses to environmental challenges in the perennial plant poplar. Here, we identified and functionally characterized three GI-like genes (PagGIa, PagGIb and PagGIc) from poplar (Populus alba × Populus glandulosa). PagGIs are predominantly nuclear localized and their transcripts are rhythmically expressed, with a peak around zeitgeber time 12 under long-day conditions. Overexpressing PagGIs in wild-type (WT) Arabidopsis induced early flowering and salt sensitivity, while overexpressing PagGIs in the gi-2 mutant completely or partially rescued its delayed flowering and enhanced salt tolerance phenotypes. Furthermore, the PagGIs-PagSOS2 complexes inhibited PagSOS2-regulated phosphorylation of PagSOS1 in the absence of stress, whereas these inhibitions were eliminated due to the degradation of PagGIs under salt stress. Down-regulation of PagGIs by RNA interference led to vigorous growth, higher biomass and enhanced salt stress tolerance in transgenic poplar plants. Taken together, these results indicate that several functions of Arabidopsis GI are conserved in its poplar orthologues, and they lay the foundation for developing new approaches to producing salt-tolerant trees for sustainable development on marginal lands worldwide.


Assuntos
Populus/genética , Tolerância ao Sal/genética , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/efeitos dos fármacos , Plantas Geneticamente Modificadas/genética , Populus/efeitos dos fármacos , Interferência de RNA , Tolerância ao Sal/fisiologia , Cloreto de Sódio/farmacologia
6.
Sci Rep ; 6: 33563, 2016 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-27633588

RESUMO

Carotenoids have essential roles in light-harvesting processes and protecting the photosynthetic machinery from photo-oxidative damage. Phytoene synthase (PSY) and Orange (Or) are key plant proteins for carotenoid biosynthesis and accumulation. We previously isolated the sweetpotato (Ipomoea batatas) Or gene (IbOr), which is involved in carotenoid accumulation and salt stress tolerance. The molecular mechanism underlying IbOr regulation of carotenoid accumulation was unknown. Here, we show that IbOr has an essential role in regulating IbPSY stability via its holdase chaperone activity both in vitro and in vivo. This protection results in carotenoid accumulation and abiotic stress tolerance. IbOr transcript levels increase in sweetpotato stem, root, and calli after exposure to heat stress. IbOr is localized in the nucleus and chloroplasts, but interacts with IbPSY only in chloroplasts. After exposure to heat stress, IbOr predominantly localizes in chloroplasts. IbOr overexpression in transgenic sweetpotato and Arabidopsis conferred enhanced tolerance to heat and oxidative stress. These results indicate that IbOr holdase chaperone activity protects IbPSY stability, which leads to carotenoid accumulation, and confers enhanced heat and oxidative stress tolerance in plants. This study provides evidence that IbOr functions as a molecular chaperone, and suggests a novel mechanism regulating carotenoid accumulation and stress tolerance in plants.


Assuntos
Ipomoea batatas/enzimologia , Enzimas Multifuncionais/metabolismo , Proteínas de Plantas/metabolismo , Adaptação Fisiológica , Estabilidade Enzimática , Regulação da Expressão Gênica de Plantas , Resposta ao Choque Térmico , Ipomoea batatas/genética , Modelos Biológicos , Chaperonas Moleculares/metabolismo , Peso Molecular , Estresse Oxidativo , Plantas Geneticamente Modificadas , Ligação Proteica , Multimerização Proteica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Recombinantes/metabolismo , Estresse Fisiológico
7.
Plant Physiol Biochem ; 108: 37-48, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27404133

RESUMO

Plants are continually exposed to numerous environmental stresses. To decrease damage caused by these potentially detrimental factors, various stress-related signaling cascades are activated in plants. One such stress-responsive signaling pathway, the mitogen-activated protein kinase (MAPK) module, plays a critical role in diverse plant stress responses. Here, we functionally characterized biotic and abiotic stress-responsive MAPK genes, IbMPK3 and IbMPK6, from sweetpotato. IbMPK3/6 contain totally 11 MAPK conserved subdomains and the phosphorylating motif TEY. Bacterially expressed IbMPK3/6 could be autophosphorylated in vitro, and these proteins phosphorylated universal kinase substrate, such as myelin basic protein. IbMPK3/6 transcripts were expressed in leaf, stem, and root of sweetpotato cultivars with storage roots of various colors. IbMPK3 and IbMPK6 were induced by various biotic/abiotic stress treatments. Furthermore, the kinase activity of IbMPK3/6 was induced during early NaCl, SA, H2O2, and ABA treatment. IbMPK3/6 were predominantly localized to the nucleus. To determine the biological functions of IbMPK3/6, we transiently expressed the IbMPK genes in tobacco (Nicotiana benthamiana) leaves, which resulted in enhanced tolerance to bacterial pathogen and increased expression of pathogenesis-related (PR) genes. These data demonstrate that IbMPK3 and IbMPK6 play significant roles in plant responses to environmental stress.


Assuntos
Ipomoea batatas/fisiologia , MAP Quinase Quinase 3/genética , MAP Quinase Quinase 6/genética , Estresse Fisiológico/genética , DNA Complementar , Resistência à Doença/genética , Regulação da Expressão Gênica de Plantas , Ipomoea batatas/genética , Ipomoea batatas/microbiologia , MAP Quinase Quinase 3/metabolismo , MAP Quinase Quinase 6/metabolismo , Filogenia , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Folhas de Planta/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Pseudomonas syringae/patogenicidade , Nicotiana/genética
8.
Plant Physiol Biochem ; 106: 118-28, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27156136

RESUMO

Tocopherol (vitamin E) is a chloroplast lipid that is presumed to be involved in the plant response to oxidative stress. In this study, we isolated and characterized five tocopherol biosynthetic genes from sweetpotato (Ipomoea batatas [L.] Lam) plants, including genes encoding 4-hydroxyphenylpyruvate dioxygenase (IbHPPD), homogentisate phytyltransferase (IbHPT), 2-methyl-6-phytylbenzoquinol methyltransferase (IbMPBQ MT), tocopherol cyclase (IbTC) and γ-tocopherol methyltransferase (IbTMT). Fluorescence microscope analysis indicated that four proteins localized into the chloroplast, whereas IbHPPD observed in the nuclear. Quantitative RT-PCR analysis revealed that the expression patterns of the five tocopherol biosynthetic genes varied in different plant tissues and under different stress conditions. All five genes were highly expressed in leaf tissues, whereas IbHPPD and IbHPT were highly expressed in the thick roots. The expression patterns of these five genes significantly differed in response to PEG, NaCl and H2O2-mediated oxidative stress. IbHPPD was strongly induced following PEG and H2O2 treatment and IbHPT was strongly induced following PEG treatment, whereas IbMPBQ MT and IbTC were highly expressed following NaCl treatment. Upon infection of the bacterial pathogen Pectobacterium chrysanthemi, the expression of IbHPPD increased sharply in sweetpotato leaves, whereas the expression of the other genes was reduced or unchanged. Additionally, transient expression of the five tocopherol biosynthetic genes in tobacco (Nicotiana bentamiana) leaves resulted in increased transcript levels of the transgenes expressions and tocopherol production. Therefore, our results suggested that the five tocopherol biosynthetic genes of sweetpotato play roles in the stress defense response as transcriptional regulators of the tocopherol production.


Assuntos
Vias Biossintéticas/genética , Genes de Plantas , Ipomoea batatas/genética , Ipomoea batatas/fisiologia , Nicotiana/genética , Estresse Fisiológico/genética , Tocoferóis/metabolismo , Vias Biossintéticas/efeitos dos fármacos , Secas , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Ipomoea batatas/efeitos dos fármacos , Ipomoea batatas/microbiologia , Especificidade de Órgãos/efeitos dos fármacos , Especificidade de Órgãos/genética , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/genética , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Plantas Geneticamente Modificadas , Análise de Sequência de DNA , Cloreto de Sódio/farmacologia , Estresse Fisiológico/efeitos dos fármacos , Frações Subcelulares/metabolismo , Nicotiana/efeitos dos fármacos , Nicotiana/microbiologia
9.
Genome Announc ; 4(1)2016 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-26823577

RESUMO

The complete genome sequence of a South Korean isolate of Rehmannia mosaic virus (ReMV) infecting Rehmannia glutinosa was determined through next-generation sequencing and Sanger sequencing. To our knowledge, this is the first report of a natural infection of R. glutinosa by ReMV in South Korea.

10.
Plant Physiol Biochem ; 100: 75-84, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26795732

RESUMO

Glycine betaine (GB), a compatible solute, effectively stabilizes the structure and function of macromolecules and enhances abiotic stress tolerance in plants. We generated transgenic poplar plants (Populus alba × Populus glandulosa) expressing a bacterial choline oxidase (codA) gene under the control of the oxidative stress-inducible SWPA2 promoter (referred to as SC plants). Among the 13 SC plants generated, three lines (SC4, SC14 and SC21) were established based on codA transcript levels, tolerance to methyl viologen-mediated oxidative stress and Southern blot analysis. Growth was better in SC plants than in non-transgenic (NT) plants, which was related to elevated transcript levels of auxin-response genes. SC plants accumulated higher levels of GB under oxidative stress compared to the NT plants. In addition, SC plants exhibited increased tolerance to drought and salt stress, which was associated with increased efficiency of photosystem II activity. Finally, SC plants maintained lower levels of ion leakage and reactive oxygen species under cold stress compared to the NT plants. These observations suggest that SC plants might be useful for reforestation on global marginal lands, including desertification and reclaimed areas.


Assuntos
Citosina Desaminase , Proteínas de Escherichia coli , Plantas Geneticamente Modificadas , Populus , Estresse Fisiológico , Betaína/metabolismo , Citosina Desaminase/biossíntese , Citosina Desaminase/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/biossíntese , Proteínas de Escherichia coli/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Populus/genética , Populus/crescimento & desenvolvimento
11.
PLoS One ; 10(5): e0126050, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25946429

RESUMO

Alfalfa (Medicago sativa L.), a perennial forage crop with high nutritional content, is widely distributed in various environments worldwide. We recently demonstrated that the sweetpotato Orange gene (IbOr) is involved in increasing carotenoid accumulation and enhancing resistance to multiple abiotic stresses. In this study, in an effort to improve the nutritional quality and environmental stress tolerance of alfalfa, we transferred the IbOr gene into alfalfa (cv. Xinjiang Daye) under the control of an oxidative stress-inducible peroxidase (SWPA2) promoter through Agrobacterium tumefaciens-mediated transformation. Among the 11 transgenic alfalfa lines (referred to as SOR plants), three lines (SOR2, SOR3, and SOR8) selected based on their IbOr transcript levels were examined for their tolerance to methyl viologen (MV)-induced oxidative stress in a leaf disc assay. The SOR plants exhibited less damage in response to MV-mediated oxidative stress and salt stress than non-transgenic plants. The SOR plants also exhibited enhanced tolerance to drought stress, along with higher total carotenoid levels. The results suggest that SOR alfalfa plants would be useful as forage crops with improved nutritional value and increased tolerance to multiple abiotic stresses, which would enhance the development of sustainable agriculture on marginal lands.


Assuntos
Genes de Plantas , Ipomoea batatas/genética , Medicago sativa/genética , Medicago sativa/fisiologia , Carotenoides/genética , Carotenoides/metabolismo , Secas , Medicago sativa/efeitos dos fármacos , Estresse Oxidativo , Paraquat/toxicidade , Plantas Geneticamente Modificadas , Tolerância ao Sal/genética , Plantas Tolerantes a Sal/genética , Plantas Tolerantes a Sal/fisiologia , Estresse Fisiológico/genética
12.
Plant Physiol Biochem ; 94: 19-27, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25980973

RESUMO

YUCCA6, a member of the YUCCA family of flavin monooxygenase-like proteins, is involved in the tryptophan-dependent IAA biosynthesis pathway and responses to environmental cues in Arabidopsis. However, little is known about the role of the YUCCA pathway in auxin biosynthesis in poplar. Here, we generated transgenic poplar (Populus alba × P. glandulosa) expressing the Arabidopsis YUCCA6 gene under the control of the oxidative stress-inducible SWPA2 promoter (referred to as SY plants). Three SY lines (SY7, SY12 and SY20) were selected based on the levels of AtYUCCA6 transcript. SY plants displayed auxin-overproduction morphological phenotypes, such as rapid shoot growth and retarded main root development with increased root hair formation. In addition, SY plants had higher levels of free IAA and early auxin-response gene transcripts. SY plants exhibited tolerance to drought stress, which was associated with reduced levels of reactive oxygen species. Furthermore, SY plants showed delayed hormone- and dark-induced senescence in detached leaves due to higher photosystem II efficiency and less membrane permeability. These results suggest that the conserved IAA biosynthesis pathway mediated by YUCCA family members exists in poplar.


Assuntos
Proteínas de Arabidopsis/biossíntese , Arabidopsis/genética , Ácidos Indolacéticos/metabolismo , Oxigenases de Função Mista/biossíntese , Populus/metabolismo , Estresse Fisiológico , Arabidopsis/enzimologia , Proteínas de Arabidopsis/genética , Oxigenases de Função Mista/genética , Plantas Geneticamente Modificadas , Populus/genética
13.
C R Biol ; 338(5): 307-13, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25910434

RESUMO

We have previously reported that transgenic sweet potato (Ipomoea batatas) plants overexpressing both CuZn superoxide dismutase (CuZnSOD) and ascorbate peroxidase (APX) under the control of a stress-inducible SWPA2 promoter in chloroplasts (referred to as SSA plants) showed increased resistance to methyl viologen-mediated oxidative stress and chilling. To investigate whether SSA plants show enhanced tolerance to air pollutants, they were exposed to 500ppb of sulfur dioxide (SO2). SO2 caused visible damage to the leaves of sweet potato, but damage in the leaves of non-transgenic (NT) plants was more severe than in those of SSA plants. The photosynthetic activity (Fv/Fm) of the SSA plants decreased by only 7% on the 5th day after the treatment, whereas that of NT plants severely decreased by 63% after 5days of recovery. Moreover, the chlorophyll content in the oldest leaf of NT plants decreased by 69%, whereas that of SSA plants remained at a high level. APX activity in NT plants increased about three times under an SO2 stress, and in SSA plants about five times compared to the case with no stress conditions. These results suggest that the overexpression of both CuZnSOD and APX in chloroplasts reduces the oxidative stress derived from SO2.


Assuntos
Poluentes Atmosféricos/toxicidade , Ascorbato Peroxidases/biossíntese , Cloroplastos/enzimologia , Ipomoea batatas/metabolismo , Plantas Geneticamente Modificadas/genética , Dióxido de Enxofre/toxicidade , Superóxido Dismutase/biossíntese , Clorofila/biossíntese , Regulação Enzimológica da Expressão Gênica , Ipomoea batatas/efeitos dos fármacos , Estresse Oxidativo/genética , Fotossíntese/efeitos dos fármacos , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo
14.
Plant Physiol Biochem ; 87: 92-101, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25562766

RESUMO

Fibrous roots of sweetpotato (Ipomoea batatas (L.) Lam.) usually develop into both pencil and storage roots. To understand protein function in root development, a proteomic analysis was conducted on the pencil and storage roots of the light orange-fleshed sweetpotato cultivar, Yulmi. Two-dimensional gel electrophoresis showed that expression of 30 protein spots differed between pencil and storage roots: 15 proteins were up-regulated or expressed in pencil roots and 15 in storage roots. Differentially expressed proteins spots were investigated using matrix-assisted laser desorption/ionization time of flight mass spectrometry, and 10 proteins from pencil roots were identified as binding protein isoform A, catechol oxidase, peroxidases, ascorbate peroxidase, endochitinase, flavanone 3-hydroxylase and unknown proteins. Of the proteins up-regulated in, or restricted to, storage roots, 13 proteins were identified as protein disulfide isomerase, anionic peroxidase, putative ripening protein, sporamin B, sporamin A and sporamin A precursor. An analysis of enzyme activity revealed that catechol oxidase and peroxidase as the first and last enzymes of the lignin biosynthesis pathway, and ascorbate peroxidase had higher activities in pencil than in storage roots. The total concentration of phenolic compounds was also far higher in pencil than in storage roots, and lignin accumulated only in pencil roots. These results provide important insight into sweetpotato proteomics, and imply that lignin biosynthesis and stress-related proteins are up-regulated or uniquely expressed in pencil roots. The results indicate that the reduction of carbon flow toward phenylpropanoid biosynthesis and its delivery to carbohydrate metabolism is a major event in storage root formation.


Assuntos
Ipomoea batatas/metabolismo , Proteínas de Plantas/biossíntese , Tubérculos/metabolismo , Proteoma/biossíntese , Proteômica , Ipomoea batatas/genética , Proteínas de Plantas/genética , Tubérculos/genética , Proteoma/genética
15.
Physiol Plant ; 153(4): 525-37, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25220246

RESUMO

The R2R3-type protein IbMYB1 is a key regulator of anthocyanin biosynthesis in the storage roots of sweet potato [Ipomoea batatas (L.) Lam]. Previously, we demonstrated that IbMYB1 expression stimulated anthocyanin pigmentation in tobacco leaves and Arabidopsis. Here, we generated dual-pigmented transgenic sweet potato plants that accumulated high levels of both anthocyanins and carotenoids in a single sweet potato storage root. An orange-fleshed cultivar with high carotenoid levels was transformed with the IbMYB1 gene under the control of either the storage root-specific sporamin 1 (SPO1) promoter or the oxidative stress-inducible peroxidase anionic 2 (SWPA2) promoter. The SPO1-MYB transgenic lines exhibited higher anthocyanin levels in storage roots than empty vector control (EV) or SWPA2-MYB plants, but carotenoid content was unchanged. SWPA2-MYB transgenic lines exhibited higher levels of both anthocyanin and carotenoids than EV plants. Analysis of hydrolyzed anthocyanin extracts indicated that cyanidin and peonidin predominated in both overexpression lines. Quantitative reverse transcription-polymerase chain reaction analysis demonstrated that IbMYB1 expression in both IbMYB1 transgenic lines strongly induced the upregulation of several genes in the anthocyanin biosynthetic pathway, whereas the expression of carotenoid biosynthetic pathway genes varied between transgenic lines. Increased anthocyanin levels in transgenic plants also promoted the elevation of proanthocyanidin and total phenolic levels in fresh storage roots. Consequently, all IbMYB1 transgenic plants displayed much higher antioxidant activities than EV plants. In field cultivations, storage root yields varied between the transgenic lines. Taken together, our results indicate that overexpression of IbMYB1 is a highly promising strategy for the generation of transgenic plants with enhanced antioxidant capacity.


Assuntos
Antocianinas/metabolismo , Antioxidantes/metabolismo , Carotenoides/metabolismo , Ipomoea batatas/genética , Proteínas de Plantas/genética , Expressão Gênica , Ipomoea batatas/metabolismo , Especificidade de Órgãos , Oxirredução , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas/genética , Nicotiana/genética , Nicotiana/fisiologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
16.
Plant Physiol Biochem ; 86: 82-90, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25438140

RESUMO

Sweetpotato [Ipomoea batatas (L.) Lam] is an important root crop that produces low molecular weight antioxidants such as carotenoids and anthocyanin. The sweetpotato orange (IbOr) protein is involved in the accumulation of carotenoids. To increase the levels of carotenoids in the storage roots of sweetpotato, we generated transgenic sweetpotato plants overexpressing IbOr-Ins under the control of the cauliflower mosaic virus (CaMV) 35S promoter in an anthocyanin-rich purple-fleshed cultivar (referred to as IbOr plants). IbOr plants exhibited increased carotenoid levels (up to 7-fold) in their storage roots compared to wild type (WT) plants, as revealed by HPLC analysis. The carotenoid contents of IbOr plants were positively correlated with IbOr transcript levels. The levels of zeaxanthin were ∼ 12 times elevated in IbOr plants, whereas ß-carotene increased ∼ 1.75 times higher than those of WT. Quantitative RT-PCR analysis revealed that most carotenoid biosynthetic pathway genes were up-regulated in the IbOr plants, including PDS, ZDS, LCY-ß, CHY-ß, ZEP and Pftf, whereas LCY-ɛ was down-regulated. Interestingly, CCD1, CCD4 and NCED, which are related to the degradation of carotenoids, were also up-regulated in the IbOr plants. Anthocyanin contents and transcription levels of associated biosynthetic genes seemed to be altered in the IbOr plants. The yields of storage roots and aerial parts of IbOr plants and WT plants were not significantly different under field cultivation. Taken together, these results indicate that overexpression of IbOr-Ins can increase the carotenoid contents of sweetpotato storage roots.


Assuntos
Antocianinas/metabolismo , Carotenoides/metabolismo , Regulação da Expressão Gênica de Plantas , Ipomoea batatas/metabolismo , Proteínas de Plantas/metabolismo , Vias Biossintéticas/genética , Clorofila/metabolismo , Dioxigenases/genética , Dioxigenases/metabolismo , Ipomoea batatas/genética , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Oxirredutases/genética , Oxirredutases/metabolismo , Fotossíntese/genética , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Tubérculos/genética , Tubérculos/metabolismo , Plantas Geneticamente Modificadas , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Zeaxantinas/metabolismo , beta Caroteno/metabolismo
17.
Plant Physiol Biochem ; 85: 31-40, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25394798

RESUMO

We generated transgenic alfalfa plants (Medicago sativa L. cv. Xinjiang Daye) expressing a bacterial codA gene in chloroplasts under the control of the SWPA2 promoter (referred to as SC plants) and evaluated the plants under various abiotic stress conditions. Three transgenic plants (SC7, SC8, and SC9) were selected for further characterization based on the strong expression levels of codA in response to methylviologen (MV)-mediated oxidative stress. SC plants showed enhanced tolerance to NaCl and drought stress on the whole plant level due to induced expression of codA. When plants were subjected to 250 mM NaCl treatment for 2 weeks, SC7 and SC8 plants maintained higher chlorophyll contents and lower malondialdehyde levels than non-transgenic (NT) plants. Under drought stress conditions, all SC plants showed enhanced tolerance to drought stress through maintaining high relative water contents and increased levels of glycinebetaine and proline compared to NT plants. Under normal conditions, SC plants exhibited increased growth due to increased expression of auxin-related IAA genes compared to NT plants. These results suggest that the SC plants generated in this study will be useful for enhanced biomass production on global marginal lands, such as high salinity and arid lands, yielding a sustainable agricultural product.


Assuntos
Adaptação Fisiológica , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Medicago sativa/fisiologia , Estresse Oxidativo , Medicago sativa/genética , Plantas Geneticamente Modificadas , Salinidade
18.
Mol Biol Rep ; 41(12): 8137-48, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25213547

RESUMO

Lycopene ß-cyclase (LCY-ß) is a key enzyme involved in the synthesis of α- and ß-branch carotenoids such as α-carotene and ß-carotene through the cyclization of lycopene. IbLCY-ß had a length of 1,506 bp and approximately 80 % nucleotide sequence identity with that of tomato LCY-ß. IbLCY-ß was strongly expressed in leaves, and expression was enhanced by salt-stress and osmotic-stress conditions. To characterize the LCY-ß gene (IbLCY-ß) of sweetpotato (Ipomoea batatas), it was isolated and transformed into calli of white-fleshed sweetpotato using an IbLCY-ß-RNAi vector. Transgenic IbLCY-ß-RNAi calli had yellow to orange color and higher antioxidant activity compared to that of white, nontransgenic (NT) calli. Transgenic cells had significantly higher contents of total carotenoids, although lycopene was not detected in transgenic or NT cells. All transgenic calli had strongly activated expression of carotenoid biosynthetic genes such as ß-carotene hydroxylases (CHY-ß), cytochrome P450 monooxygenases (P450), and carotenoid cleavage dioxigenase 1 (CCD1). Transgenic cells exhibited less salt-induced oxidative-stress damage compared to that of NT cells, and also had greater tolerance for polyethylene glycol (PEG)-mediated drought compared to that of NT cells, due to the higher water content and reduced malondialdehyde (MDA) content. The abscisic acid content was also higher in transgenic cells. These results show that a study of IbLCY-ß can facilitate understanding of the carotenoid biosynthetic pathway in sweetpotato. IbLCY-ß could be useful for developing transgenic sweetpotato enriched with nutritional carotenoids and with greater tolerance to abiotic stresses.


Assuntos
Carotenoides/biossíntese , Regulação para Baixo , Liases Intramoleculares/genética , Liases Intramoleculares/metabolismo , Ipomoea batatas/genética , Ácido Abscísico/metabolismo , Regulação da Expressão Gênica de Plantas , Ipomoea batatas/enzimologia , Licopeno , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/enzimologia , Plantas Geneticamente Modificadas/genética , Polietilenoglicóis/farmacologia , Tolerância ao Sal , Estresse Fisiológico
19.
Plant Physiol Biochem ; 84: 67-77, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25240265

RESUMO

In this study, we generated and evaluated transgenic alfalfa plants (Medicago sativa L. cv. Xinjiang Daye) expressing the Arabidopsis nucleoside diphosphate kinase 2 (AtNDPK2) gene under the control of the oxidative stress-inducible SWPA2 promoter (referred to as SN plants) to develop plants with enhanced tolerance to various abiotic stresses. We selected two SN plants (SN4 and SN7) according to the expression levels of AtNDPK2 and the enzyme activity of NDPK in response to methyl viologen (MV)-mediated oxidative stress treatment using leaf discs for further characterization. SN plants showed enhanced tolerance to high temperature, NaCl, and drought stress on the whole-plant level. When the plants were subjected to high temperature treatment (42 °C for 24 h), the non-transgenic (NT) plants were severely wilted, whereas the SN plants were not affected because they maintained high relative water and chlorophyll contents. The SN plants also showed significantly higher tolerance to 250 mM NaCl and water stress treatment than the NT plants. In addition, the SN plants exhibited better plant growth through increased expression of auxin-related indole acetic acid (IAA) genes (MsIAA3, MsIAA5, MsIAA6, MsIAA7, and MsIAA16) under normal growth conditions compared to NT plants. The results suggest that induced overexpression of AtNDPK2 in alfalfa will be useful for increasing biomass production under various abiotic stress conditions.


Assuntos
Medicago sativa/efeitos dos fármacos , Medicago sativa/metabolismo , Plantas Geneticamente Modificadas/efeitos dos fármacos , Plantas Geneticamente Modificadas/metabolismo , Medicago sativa/genética , Estresse Oxidativo/efeitos dos fármacos , Paraquat/farmacologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Cloreto de Sódio/farmacologia , Temperatura
20.
Mol Biol Rep ; 41(10): 6957-66, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25030835

RESUMO

Metallothioneins (MTs) are cysteine-rich, low molecular weight, metal-binding proteins that are widely distributed in living organisms. Plants produce metal-chelating proteins such as MTs to overcome the toxic effects of heavy metals. We cloned three MT genes from sweetpotato leaves [Ipomoea batatas (L.) Lam.]. The three IbMT genes were classified according to their cysteine residue alignment into type 1 (IbMT1), type 2 (IbMT2), and type 3 (IbMT3). IbMT1 was the most abundantly transcribed MT. It was predominantly expressed in leaves, roots, and callus. IbMT2 transcript was detected only in stems and fibrous roots, whereas IbMT3 was strongly expressed in leaves and stems. The IbMT expression profiles were investigated in plants exposed to heavy metals and abiotic stresses. The levels of IbMT1 expression were strongly elevated in response to Cd and Fe, and moderately higher in response to Cu. The IbMT3 expression pattern in response to heavy metals was similar to that of IbMT1. Exposure to abiotic stresses such as methyl viologen (MV; paraquat), NaCl, polyethylene glycol (PEG), and H2O2 up-regulated IbMT expression; IbMT1 responded strongly to MV and NaCl, whereas IbMT3 was induced by low temperature and PEG. Transgenic Escherichia coli overexpressing IbMT1 protein exhibited results suggest that IbMT could be a useful tool for engineering plants with enhanced tolerance to environmental stresses and heavy metals.


Assuntos
Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Ipomoea batatas/efeitos dos fármacos , Ipomoea batatas/genética , Metalotioneína/genética , Metais Pesados/toxicidade , Estresse Fisiológico/genética , Adaptação Biológica/genética , Sequência de Aminoácidos , Células Cultivadas , Escherichia coli/genética , Escherichia coli/metabolismo , Ipomoea batatas/classificação , Metalotioneína/química , Dados de Sequência Molecular , Especificidade de Órgãos/genética , Filogenia , Reguladores de Crescimento de Plantas/farmacologia , Plantas Geneticamente Modificadas , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...