Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 8(43): 29419-29426, 2016 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-27731622

RESUMO

We demonstrated crystallization retardation of CH3NH3PbI3 thin film during single coating of precursor solution by simple addition of NaCl. NaCl was codissolved into a precursor mixture solution containing PbI2 and methylammonium iodide (MAI). Dissolved NaCl interacted with the PbI2 in solution and produced a stable intermediate phase, which was converted to a full-coverage uniform perovskite absorber layer via reaction with MAI during a single spin-coating. The resulting planar-structure perovskite solar cell made from NaCl-supplemented precursor solution showed a 48% improvement in power conversion efficiency (PCE) (maximum value 15.16%) over the device fabricated without the additive. Our NaCl-supplemented single coating represents an easy approach to effectively obtain highly reproducible uniform performance at an overall position in 5 cm × 5 cm sized cells (divided into 20 subcells with an active area of 0.06 cm2) with average PCEs of 12.00 ± 0.48%.

2.
Nanoscale ; 8(12): 6308-16, 2016 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-26465213

RESUMO

We report all-solution-processed transparent conductive electrodes based on Ag nanowire (AgNW)-embedded metal oxide composite films for application in organometal halide perovskite solar cells. To address the thermal instability of Ag nanowires, we used combustive sol-gel derived thin films to construct ZnO/ITO/AgNW/ITO composite structures. The resulting composite configuration effectively prevented the AgNWs from undergoing undesirable side-reactions with halogen ions present in the perovskite precursor solutions that significantly deteriorate the optoelectrical properties of Ag nanowires in transparent conductive films. AgNW-based composite electrodes had a transmittance of ∼80% at 550 nm and sheet resistance of 18 Ω sq(-1). Perovskite solar cells fabricated using a fully solution-processed transparent conductive electrode, Au/spiro-OMeTAD/CH3NH3PbI3 + m-Al2O3/ZnO/ITO/AgNW/ITO, exhibited a power conversion efficiency of 8.44% (comparable to that of the FTO/glass-based counterpart at 10.81%) and were stable for 30 days in ambient air. Our results demonstrate the feasibility of using AgNWs as a transparent bottom electrode in perovskite solar cells produced by a fully printable process.

3.
ACS Appl Mater Interfaces ; 6(20): 17740-7, 2014 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-25265601

RESUMO

Recently, environmental-friendly, solution-processed, flexible Cu(In,Ga)(S,Se)2 devices have gained significant interest, primarily because the solution deposition method enables large-scale and low-cost production of photovoltaics, and a flexible substrate can be implemented on uneven surfaces in various applications. Here, we suggest a novel green-chemistry aqueous ink that is readily achievable through the incorporation of molecular precursors in an aqueous medium. A copper formate precursor was introduced to lower the fabrication temperature, provide compatibility with a polyimide plastic substrate, and allow for high photovoltaic performance. Through a comparative spectroscopic study on temperature-dependent chemical/crystal structural evolution, the chemical role of copper formate was elucidated, which led to the chalcopyrite framework that was appropriate to low-temperature annealed Cu(In,Ga)S2 absorber layers at 400 °C. This Cu(In,Ga)S2 solar cell exhibited a power conversion efficiency of 7.04% on a rigid substrate and 5.60% on a polymeric substrate. Our cell on the polymeric substrate also demonstrated both acceptable mechanical flexibility and durability throughout a repeated bending test of 200 cycles.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA