Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38607382

RESUMO

We propose a band engineering scheme on the biphenylene network, a newly synthesized carbon allotrope. We illustrate that the electronic structure of the biphenylene network can be significantly altered by controlling conditions affecting the symmetry and destructive interference of wave functions through periodic fluorination. First, we investigate the mechanism for the appearance of a type-II Dirac fermion in a pristine biphenylene network. We show that the essential ingredients are mirror symmetries and stabilization of the compact localized eigenstates via destructive interference. While the former is used for the band-crossing point along high symmetry lines, the latter induces highly inclined Dirac dispersions. Subsequently, we demonstrate the transformation of the biphenylene network's type-II Dirac semimetal phase into various Dirac phases such as type-I Dirac, gapped type-II Dirac, and nodal line semimetals through the deliberate disruption of mirror symmetry or modulation of destructive interference by varying the concentration of fluorine atoms.

2.
ACS Nano ; 17(14): 13734-13745, 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37399231

RESUMO

Elucidating the water-induced degradation mechanism of quantum-sized semiconductor nanocrystals is an important prerequisite for their practical application because they are vulnerable to moisture compared to their bulk counterparts. In-situ liquid-phase transmission electron microscopy is a desired method for studying nanocrystal degradation, and it has recently gained technical advancement. Herein, the moisture-induced degradation of semiconductor nanocrystals is investigated using graphene double-liquid-layer cells that can control the initiation of reactions. Crystalline and noncrystalline domains of quantum-sized CdS nanorods are clearly distinguished during their decomposition with atomic-scale imaging capability of the developed liquid cells. The results reveal that the decomposition process is mediated by the involvement of the amorphous-phase formation, which is different from conventional nanocrystal etching. The reaction can proceed without the electron beam, suggesting that the amorphous-phase-mediated decomposition is induced by water. Our study discloses unexplored aspects of moisture-induced deformation pathways of semiconductor nanocrystals, involving amorphous intermediates.

3.
Nanoscale ; 15(2): 532-539, 2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36515137

RESUMO

Nanoparticle surfaces are passivated by surface-bound ligands, and their adsorption on synthesized nanoparticles is complicated because of the intricate and low-symmetry surface structures. Thus, it is challenging to precisely investigate ligand adsorption on synthesized nanoparticles. Here, we applied machine-learning-accelerated ab initio calculation to experimentally resolved 3D atomic structures of Pt nanoparticles to analyze the complex adsorption behavior of polyvinylpyrrolidone (PVP) ligands on synthesized nanoparticles. Different angular configurations of large-sized ligands are thoroughly investigated to understand the adsorption behavior on various surface-exposed atoms with intrinsic low-symmetry. It is revealed that the ligand binding energy (Eads) of the large-sized ligand shows a weak positive relationship with the generalized coordination number . This is because the strong positive relationship of short-range direct bonding (Ebind) is attenuated by the negative relationship of long-range van der Waals interaction (EvdW). In addition, it is demonstrated that the PVP ligands prefer to adsorb where the long-range vdW interaction with the surrounding surface structure is maximized. Our results highlight the significant contribution of vdW interactions and the importance of the local geometry of surface atoms to the adsorption behavior of large-sized ligands on synthesized nanoparticle surfaces.

4.
ACS Nano ; 16(2): 2176-2187, 2022 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-35112565

RESUMO

Sensitive and selective detection of target gases is the ultimate goal for commercialization of graphene gas sensors. Here, ultrasensitive n-channel graphene gas sensors were developed by using n-doped graphene with ethylene amines. The exposure of the n-doped graphene to oxidizing gases such as NO2 leads to a current decrease that depends strongly on the number of amine functional groups in various types of ethylene amines. Graphene doped with diethylenetriamine (DETA) exhibits the highest response, recovery, and long-term sensing stability to NO2, with an average detection limit of 0.83 parts per quadrillion (ppq, 10-15), due to the attractive electrostatic interaction between electron-rich graphene and electron-deficient NO2. Our first-principles calculation supported a preferential adsorption of NO2 on n-doped graphene. In addition, gas molecules on the n-channel graphene provide charged impurities, thereby intensifying the current decrease for an excellent response to oxidizing gases such as NO2 or SO2. On the contrary, absence of such a strong interaction between NH3 and DETA-doped graphene and combined effects of current increase by n-doping and mobility decrease by charged impurities result in a completely no response to NH3. Because the n-channel is easily induced by a top-molecular dopant, a flexible graphene sensor with outstanding NO2 detection capability was successfully fabricated on plastic without vertical stacks of gate-electrode and gate-dielectric. Our gate-free graphene gas sensors enabled by nondestructive molecular n-doping could be used for the selective detection of subppq-level NO2 in a gas mixture with reducing gases.

6.
ACS Omega ; 6(41): 27045-27051, 2021 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-34693124

RESUMO

Recently, transition metal (TM)-porphyrin-like graphene has been predicted to be a promising material for CO2 capturing under favorable conditions. Such materials can capture CO2 at 300 K and release it at 450 K. However, the captured CO2 gas is mostly stored in oceans. With the aid of first principles calculations, we herein propose a method in which the captured CO2 is converted into an environmentally friendly product, formic acid. Addition of H2 to CO2 molecules adsorbed on Sc- and Ti-porphyrin-like graphene was found to catalyze this conversion. We also performed nudged elastic band calculations and thermodynamic analysis using the first-order Polanyi-Wigner equation and equilibrium statistical mechanics to investigate the chemical reactions involved in this conversion. In addition, we performed Bader charge analysis to obtain insights into the mechanism of charge transfer and adsorption throughout the conversion. Our study presents a novel method in which the captured CO2 is treated by converting it into an environmentally friendly product. Since this method does not require CO2 storage, it is expected to be an effective strategy to manage the rising CO2 level in the environment.

7.
Nano Lett ; 21(21): 9153-9163, 2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34677071

RESUMO

Two-dimensional (2D) transition metal dichalcogenide (TMD) layers are unit-cell thick materials with tunable physical properties according to their size, morphology, and chemical composition. Their transition of lab-scale research to industrial-scale applications requires process development for the wafer-scale growth and scalable device fabrication. Herein, we report on a new type of atmospheric pressure chemical vapor deposition (APCVD) process that utilizes colloidal nanoparticles as process-scalable precursors for the wafer-scale production of TMD monolayers. Facile uniform distribution of nanoparticle precursors on the entire substrate leads to the wafer-scale uniform synthesis of TMD monolayers with the controlled size and morphology. Composition-controlled TMD alloy monolayers with tunable bandgaps can be produced by simply mixing dual nanoparticle precursor solutions in the desired ratio. We also demonstrate the fabrication of ultrathin field-effect transistors and flexible electronics with uniformly controlled performance by using TMD monolayers.

8.
ACS Appl Mater Interfaces ; 13(7): 8727-8735, 2021 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-33561342

RESUMO

Van der Waals epitaxy on the surface of two-dimensional (2D) layered crystals has gained significant research interest for the assembly of well-ordered nanostructures and fabrication of vertical heterostructures based on 2D crystals. Although van der Waals epitaxial assembly on the hexagonal phase of transition metal dichalcogenides (TMDCs) has been relatively well characterized, a comparable study on the distorted octahedral phase (1T' or Td) of TMDCs is largely lacking. Here, we investigate the assembly behavior of one-dimensional (1D) AgCN microwires on various distorted TMDC crystals, namely 1T'-MoTe2, Td-WTe2, and 1T'-ReS2. The unidirectional alignment of AgCN chains is observed on these crystals, reflecting the symmetry of underlying distorted TMDCs. Polarized Raman spectroscopy and transmission electron microscopy directly confirm that AgCN chains display the remarkable alignment behavior along the distorted chain directions of underlying TMDCs. The observed unidirectional assembly behavior can be attributed to the favorable adsorption configurations of 1D chains along the substrate distortion, which is supported by our theoretical calculations and observation of similar assembly behavior from different cyanide chains. The aligned AgCN microwires can be harnessed as facile markers to identify polymorphs and crystal orientations of TMDCs.

9.
Phys Chem Chem Phys ; 22(27): 15675-15682, 2020 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-32618312

RESUMO

By using first principles density functional theory simulations, we report detailed geometries, electronic structures and hydrogen (H2) storage properties of boron nitride nanotubes (BNNTs) doped with selective polylithiated molecules (CLi2). We find that unsaturated bonding of Li-1s states with BNNT significantly enhances the system stability and hinders the Li-Li clustering effect, which can be detrimental for reversible H2 storage. The H2 adsorption mechanism is explained on the basis of polarization caused by the cationic Li+ of CLi2 molecules bonded with BNNT. The incident H2 molecules are adsorbed with BNNT-nCLi2 through electrostatic and van der Waals interactions. We find that with a maximum of 5.0% of CLi2 coverage on BNNT, an H2 gravimetric density of up to 4.41 wt% can be achieved with adsorption energies in the range of -0.33 eV per H2, which is suitable for ambient condition H2 storage applications.

10.
Sci Rep ; 10(1): 8258, 2020 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-32427899

RESUMO

Interlayer coupling in graphene-based van der Waals (vdW) heterostructures plays a key role in determining and modulating their physical properties. Hence, its influence on the optical and electronic properties cannot be overlooked in order to promote various next-generation applications in electronic and opto-electronic devices based on the low-dimensional materials. Herein, the optical and electrical properties of the vertically stacked large area heterostructure of the monolayer graphene transferred onto a monolayer graphene oxide film are investigated. An effective and stable p-doping property of this structure is shown by comparison to that of the graphene device fabricated on a silicon oxide substrate. Through Raman spectroscopy and density functional theory calculations of the charge transport characteristics, it is found that graphene is affected by sustainable p-doping effects induced from underneath graphene oxide even though they have weak interlayer interactions. This finding can facilitate the development of various fascinating graphene-based heterostructures and extend their practical applications in integrated devices with advanced functionalities.

11.
J Phys Chem A ; 124(18): 3636-3640, 2020 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-32298116

RESUMO

Structural properties and energetics of carbon rings are studied with the diffusion Monte Carlo (DMC) method. Our DMC-based geometry optimization reveals that both polyynic C4n and cumulenic C4n + 2 rings exhibit bond length alternations for n ≥ 3, which is understood to be due to Jahn-Teller distortions. The bond length alternation even in a cumulenic (4n + 2) carbon ring was experimentally observed in a recently synthesized C18 molecule. From a comparison of the DMC cohesive energies of C4n with those of C4n + 2, we present a comprehensive picture of the competition between Hückel's rule and Jahn-Teller distortion in small carbon rings; the former is more dominant than the latter for n < 5 where C4n + 2 rings are more stable than C4n, while C4n rings are as stable as C4n + 2 for n < 5 where dimerization effects due to Jahn-Teller distortion are more important.

12.
Science ; 368(6486): 60-67, 2020 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-32241943

RESUMO

Precise three-dimensional (3D) atomic structure determination of individual nanocrystals is a prerequisite for understanding and predicting their physical properties. Nanocrystals from the same synthesis batch display what are often presumed to be small but possibly important differences in size, lattice distortions, and defects, which can only be understood by structural characterization with high spatial 3D resolution. We solved the structures of individual colloidal platinum nanocrystals by developing atomic-resolution 3D liquid-cell electron microscopy to reveal critical intrinsic heterogeneity of ligand-protected platinum nanocrystals in solution, including structural degeneracies, lattice parameter deviations, internal defects, and strain. These differences in structure lead to substantial contributions to free energies, consequential enough that they must be considered in any discussion of fundamental nanocrystal properties or applications.

13.
Adv Sci (Weinh) ; 7(4): 1900757, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32099750

RESUMO

The atomic or molecular assembly on 2D materials through the relatively weak van der Waals interaction is quite different from the conventional heteroepitaxy and may result in unique growth behaviors. Here, it is shown that straight 1D cyanide chains display universal epitaxy on hexagonal 2D materials. A universal oriented assembly of cyanide crystals (AgCN, AuCN, and Cu0.5Au0.5CN) is observed, where the chains are aligned along the three zigzag lattice directions of various 2D hexagonal crystals (graphene, h-BN, WS2, MoS2, WSe2, MoSe2, and MoTe2). The potential energy landscape of the hexagonal lattice induces this preferred alignment of 1D chains along the zigzag lattice directions, regardless of the lattice parameter and surface elements as demonstrated by first-principles calculations and parameterized surface potential calculations. Furthermore, the oriented microwires can serve as crystal orientation markers, and stacking-angle-controlled vertical 2D heterostructures are successfully fabricated by using them as markers. The oriented van der Waals epitaxy can be generalized to any hexagonal 2D crystals and will serve as a unique growth process to form crystals with orientations along the zigzag directions by epitaxy.

14.
Sci Rep ; 9(1): 19826, 2019 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-31863038

RESUMO

Raman spectroscopy is the most commonly used method to investigate structures of materials. Recently, few-layered IV-VI 2D materials (SnS, SnSe, GeS, and GeSe) have been found and ignited significant interest in electronic and optical applications. However, unlike few-layer graphene, in which its interlayer structures such as the number of its layers are confirmed through measurement of the Raman scattering, few-layer IV-VI 2D materials have not yet been developed to the point of understanding their interlayer structure. Here we performed first-principles calculations on Raman spectroscopy for few-layer IV-VI 2D materials. In addition to achieving consistent results with measurements of bulk structures, we revealed significant red and blue shifts of characteristic Raman modes up to 100 cm-1 associated with the layer number. These shifts of lattice vibrational modes originate from the change of the bond lengths between the metal atoms and chalcogen atoms through the change of the interlayer interactions. Particularly, our study shows weak covalent bonding between interlayers, making the evolution of Raman signals according to the thickness different from other vdW materials. Our results suggest a new way for obtaining information of layer structure of few-layer IV-VI 2D materials through Raman spectroscopy.

15.
Sci Rep ; 9(1): 20253, 2019 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-31882982

RESUMO

Crystal structure prediction and in silico physical property observations guide experimental synthesis in high-pressure research. Here, we used magnesium carbides as a representative example of computational high-pressure studies. We predicted various compositions of Mg-C compounds up to 150 GPa and successfully reproduced previous experimental results. Interestingly, our proposed MgC2 at high pressure >7 GPa consists of extended carbon bonds, one-dimensional graphene layers, and Mg atomic layers, which provides a good platform to study superconductivity of metal intercalated graphene nano-ribbons. We found that this new phase of MgC2 could be recovered to ambient pressure and exhibited a strong electron-phonon coupling (EPC) strength of 0.6 whose corresponding superconductivity transition temperature reached 15 K. The EPC originated from the cooperation of the out-of-plane and the in-plane phonon modes. The geometry confinement and the hybridization between the Mg s and C pz orbitals significantly affect the coupling of phonon modes and electrons. These results show the importance of the high-pressure route to the synthesis of novel functional materials, which can promote the search for new phases of carbon-based superconductors.

16.
J Am Chem Soc ; 141(17): 7037-7045, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30964997

RESUMO

The formation of inorganic nanoparticles has been understood based on the classical crystallization theory described by a burst of nucleation, where surface energy is known to play a critical role, and a diffusion-controlled growth process. However, this nucleation and growth model may not be universally applicable to the entire nanoparticle systems because different precursors and surface ligands are used during their synthesis. Their intrinsic chemical reactivity can lead to a formation pathway that deviates from a classical nucleation and growth model. The formation of metal oxide nanoparticles is one such case because of several distinct chemical aspects during their synthesis. Typical carboxylate surface ligands, which are often employed in the synthesis of oxide nanoparticles, tend to continuously remain on the surface of the nanoparticles throughout the growth process. They can also act as an oxygen source during the growth of metal oxide nanoparticles. Carboxylates are prone to chemical reactions with different chemical species in the synthesis such as alcohol or amine. Such reactions can frequently leave reactive hydroxyl groups on the surface. Herein, we track the entire growth process of iron oxide nanoparticles synthesized from conventional iron precursors, iron-oleate complexes, with strongly chelating carboxylate moieties. Mass spectrometry studies reveal that the iron-oleate precursor is a cluster comprising a tri-iron-oxo core and carboxylate ligands rather than a mononuclear complex. A combinatorial analysis shows that the entire growth, regulated by organic reactions of chelating ligands, is continuous without a discrete nucleation step.

17.
Nanoscale ; 11(14): 7002, 2019 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-30912565

RESUMO

Correction for 'Textile-based high-performance hydrogen evolution of low-temperature atomic layer deposition of cobalt sulfide' by Jusang Park, Hyungjun Kim et al., Nanoscale, 2019, 11, 844-850.

18.
J Am Chem Soc ; 141(2): 763-768, 2019 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-30608684

RESUMO

Nonclassical features of crystallization in solution have been recently identified both experimentally and theoretically. In particular, an amorphous-phase-mediated pathway is found in various crystallization systems as an important route, different from the classical nucleation and growth model. Here, we utilize high-resolution in situ transmission electron microscopy with graphene liquid cells to study amorphous-phase-mediated formation of Ni nanocrystals. An amorphous phase is precipitated in the initial stage of the reaction. Within the amorphous particles, crystalline domains nucleate and eventually form nanocrystals. In addition, unique crystallization behaviors, such as formation of multiple domains and dislocation relaxation, are observed in amorphous-phase-mediated crystallization. Theoretical calculations confirm that surface interactions can induce amorphous precipitation of metal precursors, which is analogous to the surface-induced amorphous-to-crystalline transformation occurring in biomineralization. Our results imply that an unexplored nonclassical growth mechanism is important for the formation of nanocrystals.

19.
ACS Appl Mater Interfaces ; 11(3): 2571-2578, 2019 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-29484878

RESUMO

We performed first-principles calculations on few-layer graphdiyne (GDY) and its family, sp-sp2 hybrid carbon atomic layers, for an off-plane, static dielectric screening. The vertical dielectric constants of semiconducting GDY structures are finite and independent of the thickness. However, unlike the widely accepted wisdom that the static metallic screening is infinite, those of metallic GDY structures are finite and dependent on their thickness. Furthermore, the vertical dielectric screening can be tuned by varying the interlayer distance. We also studied the dielectric properties of heterostructures of GDY/its family; the vertical dielectric constant has an equivalent value from the two distinct values of the two distinct monostructures. The dielectric screening behaviors are well described by the uniform dielectric slab model. In addition, the band gaps can be widely tuned from 0 to 0.8 eV, by varying the thickness and electric field. Our results provide a method for engineering the dielectric constant and band gap of GDY and its family for applications of supercapacitors and nanodevices.

20.
Nanoscale ; 11(3): 844-850, 2019 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-30575841

RESUMO

Hydrogen is an appealing green energy resource to meet increasing energy demands. To produce hydrogen using the hydrogen evolution reaction (HER), platinum, an expensive and scarce metal, is commonly used and plays a crucial role in maximizing catalytic performance. Transition metal chalcogenides, especially cobalt sulfides (CoSx), are considered an alternative to platinum because of their electrochemical properties, for example, low Tafel slopes and overpotentials. Here, we report a light weight, flexible textile-based HER catalyst through a low-temperature process using the atomic layer deposition (ALD) of CoSx. The electrochemical properties of HER catalysts were investigated and found to be impressive, with a low Tafel slope of 41 mV dec-1 and high exchange current density, demonstrating that these are one of the best characteristics among textile-based HER catalysts. The superb catalytic performances were attributed to the amorphous CoSx phase, confirmed by DFT calculations. This study demonstrates that the integration of HER catalysts with textiles allows the development of highly efficient hydrogen energy production systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...