Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 16(1)2016 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-26784206

RESUMO

Most gaze tracking systems are based on the pupil center corneal reflection (PCCR) method using near infrared (NIR) illuminators. One advantage of the PCCR method is the high accuracy it achieves in gaze tracking because it compensates for the pupil center position based on the relative position of corneal specular reflection (SR). However, the PCCR method only works for user head movements within a limited range, and its performance is degraded by the natural movement of the user's head. To overcome this problem, we propose a gaze tracking method using an ultrasonic sensor that is robust to the natural head movement of users. Experimental results demonstrate that with our compensation method the gaze tracking system is more robust to natural head movements compared to other systems without our method and commercial systems.

2.
Sensors (Basel) ; 15(5): 10580-615, 2015 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-25951341

RESUMO

With the development of intelligent surveillance systems, the need for accurate detection of pedestrians by cameras has increased. However, most of the previous studies use a single camera system, either a visible light or thermal camera, and their performances are affected by various factors such as shadow, illumination change, occlusion, and higher background temperatures. To overcome these problems, we propose a new method of detecting pedestrians using a dual camera system that combines visible light and thermal cameras, which are robust in various outdoor environments such as mornings, afternoons, night and rainy days. Our research is novel, compared to previous works, in the following four ways: First, we implement the dual camera system where the axes of visible light and thermal cameras are parallel in the horizontal direction. We obtain a geometric transform matrix that represents the relationship between these two camera axes. Second, two background images for visible light and thermal cameras are adaptively updated based on the pixel difference between an input thermal and pre-stored thermal background images. Third, by background subtraction of thermal image considering the temperature characteristics of background and size filtering with morphological operation, the candidates from whole image (CWI) in the thermal image is obtained. The positions of CWI (obtained by background subtraction and the procedures of shadow removal, morphological operation, size filtering, and filtering of the ratio of height to width) in the visible light image are projected on those in the thermal image by using the geometric transform matrix, and the searching regions for pedestrians are defined in the thermal image. Fourth, within these searching regions, the candidates from the searching image region (CSI) of pedestrians in the thermal image are detected. The final areas of pedestrians are located by combining the detected positions of the CWI and CSI of the thermal image based on OR operation. Experimental results showed that the average precision and recall of detecting pedestrians are 98.13% and 88.98%, respectively.

3.
Sensors (Basel) ; 15(3): 5935-81, 2015 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-25769050

RESUMO

Gaze tracking systems usually utilize near-infrared (NIR) lights and NIR cameras, and the performance of such systems is mainly affected by external light sources that include NIR components. This is ascribed to the production of additional (imposter) corneal specular reflection (SR) caused by the external light, which makes it difficult to discriminate between the correct SR as caused by the NIR illuminator of the gaze tracking system and the imposter SR. To overcome this problem, a new method is proposed for determining the correct SR in the presence of external light based on the relationship between the corneal SR and the pupil movable area with the relative position of the pupil and the corneal SR. The experimental results showed that the proposed method makes the gaze tracking system robust to the existence of external light.


Assuntos
Córnea/fisiologia , Movimentos Oculares/fisiologia , Fixação Ocular , Humanos , Luz , Iluminação
4.
Sensors (Basel) ; 14(4): 6516-34, 2014 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-24721768

RESUMO

In scalp skin examinations, it is difficult to find a previously treated region on a patient's scalp through images captured by a camera attached to a diagnostic device because the zoom lens on camera has a small field of view. Thus, doctors manually record the region on a chart or manually mark the region. However, this process is slow and inconveniences the patient. Thus, we propose a new system for tracking the diagnostic device for the scalp skin of patients. Our research is novel in four ways. First, our proposed system consists of two cameras to capture the face and the diagnostic device. Second, the user can easily set the position of camera to capture the diagnostic device by manually moving a frame to which the camera is attached. Third, the position of patient's nostrils and corners of the eyes are detected to align the position of his/her head more accurately with the recorded position from previous sessions. Fourth, the position of the diagnostic device is continuously tracked during the examination through images that help detect the position of the color marker attached to the device. Experimental results show that our system has a higher performance than conventional method.


Assuntos
Técnicas e Procedimentos Diagnósticos/instrumentação , Couro Cabeludo/anatomia & histologia , Pele/anatomia & histologia , Adulto , Humanos , Imageamento Tridimensional , Fatores de Tempo
5.
Sensors (Basel) ; 14(2): 2110-34, 2014 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-24473283

RESUMO

Conventional gaze tracking systems are limited in cases where the user is wearing glasses because the glasses usually produce noise due to reflections caused by the gaze tracker's lights. This makes it difficult to locate the pupil and the specular reflections (SRs) from the cornea of the user's eye. These difficulties increase the likelihood of gaze detection errors because the gaze position is estimated based on the location of the pupil center and the positions of the corneal SRs. In order to overcome these problems, we propose a new gaze tracking method that can be used by subjects who are wearing glasses. Our research is novel in the following four ways: first, we construct a new control device for the illuminator, which includes four illuminators that are positioned at the four corners of a monitor. Second, our system automatically determines whether a user is wearing glasses or not in the initial stage by counting the number of white pixels in an image that is captured using the low exposure setting on the camera. Third, if it is determined that the user is wearing glasses, the four illuminators are turned on and off sequentially in order to obtain an image that has a minimal amount of noise due to reflections from the glasses. As a result, it is possible to avoid the reflections and accurately locate the pupil center and the positions of the four corneal SRs. Fourth, by turning off one of the four illuminators, only three corneal SRs exist in the captured image. Since the proposed gaze detection method requires four corneal SRs for calculating the gaze position, the unseen SR position is estimated based on the parallelogram shape that is defined by the three SR positions and the gaze position is calculated. Experimental results showed that the average gaze detection error with 20 persons was about 0.70° and the processing time is 63.72 ms per each frame.

6.
Sensors (Basel) ; 13(10): 13439-63, 2013 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-24105351

RESUMO

We propose a new remote gaze tracking system as an intelligent TV interface. Our research is novel in the following three ways: first, because a user can sit at various positions in front of a large display, the capture volume of the gaze tracking system should be greater, so the proposed system includes two cameras which can be moved simultaneously by panning and tilting mechanisms, a wide view camera (WVC) for detecting eye position and an auto-focusing narrow view camera (NVC) for capturing enlarged eye images. Second, in order to remove the complicated calibration between the WVC and NVC and to enhance the capture speed of the NVC, these two cameras are combined in a parallel structure. Third, the auto-focusing of the NVC is achieved on the basis of both the user's facial width in the WVC image and a focus score calculated on the eye image of the NVC. Experimental results showed that the proposed system can be operated with a gaze tracking accuracy of ±0.737°~±0.775° and a speed of 5~10 frames/s.


Assuntos
Terminais de Computador , Apresentação de Dados , Fixação Ocular/fisiologia , Reconhecimento Automatizado de Padrão/métodos , Fotografação/instrumentação , Tecnologia de Sensoriamento Remoto/instrumentação , Televisão/instrumentação , Desenho de Equipamento , Análise de Falha de Equipamento , Humanos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Interface Usuário-Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...