Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genetics ; 173(2): 965-74, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16547097

RESUMO

Allopolyploidy is formed by combining two or more divergent genomes and occurs throughout the evolutionary history of many plants and some animals. Transcriptome analysis indicates that many genes in various biological pathways, including flowering time, are expressed nonadditively (different from the midparent value). However, the mechanisms for nonadditive gene regulation in a biological pathway are unknown. Natural variation of flowering time is largely controlled by two epistatically acting loci, namely FRIGIDA (FRI) and FLOWERING LOCUS C (FLC). FRI upregulates FLC expression that represses flowering in Arabidopsis. Synthetic Arabidopsis allotetraploids contain two sets of FLC and FRI genes originating from Arabidopsis thaliana and A. arenosa, respectively, and flower late. Inhibition of early flowering is caused by upregulation of A. thaliana FLC (AtFLC) that is trans-activated by A. arenosa FRI (AaFRI). Two duplicate FLCs (AaFLC1 and AaFLC2) originating from A. arenosa are expressed in some allotetraploids but silenced in other lines. The expression variation in the allotetraploids is associated with deletions in the promoter regions and first introns of A. arenosa FLCs. The strong AtFLC and AaFLC loci are maintained in natural Arabidopsis allotetraploids, leading to extremely late flowering. Furthermore, FLC expression correlates positively with histone H3-Lys4 methylation and H3-Lys9 acetylation and negatively with H3-Lys9 methylation, epigenetic marks for gene activation and silencing. We provide evidence for interactive roles of regulatory sequence changes, chromatin modification, and trans-acting effects in natural selection of orthologous FLC loci, which determines the fate of duplicate genes and adaptation of allopolyploids during evolution.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Proteínas de Domínio MADS/genética , Acetilação , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Sequência de Bases , DNA de Plantas/genética , Epigênese Genética , Evolução Molecular , Flores/genética , Flores/crescimento & desenvolvimento , Duplicação Gênica , Regulação da Expressão Gênica de Plantas , Inativação Gênica , Genes de Plantas , Teste de Complementação Genética , Variação Genética , Histonas/química , Histonas/metabolismo , Lisina/química , Metilação , Dados de Sequência Molecular , Filogenia , Poliploidia , Especificidade da Espécie , Ativação Transcricional , Regulação para Cima
2.
Genetics ; 172(1): 507-17, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16172500

RESUMO

Polyploidy has occurred throughout the evolutionary history of all eukaryotes and is extremely common in plants. Reunification of the evolutionarily divergent genomes in allopolyploids creates regulatory incompatibilities that must be reconciled. Here we report genomewide gene expression analysis of Arabidopsis synthetic allotetraploids, using spotted 70-mer oligo-gene microarrays. We detected >15% transcriptome divergence between the progenitors, and 2105 and 1818 genes were highly expressed in Arabidopsis thaliana and A. arenosa, respectively. Approximately 5.2% (1362) and 5.6% (1469) genes displayed expression divergence from the midparent value (MPV) in two independently derived synthetic allotetraploids, suggesting nonadditive gene regulation following interspecific hybridization. Remarkably, the majority of nonadditively expressed genes in the allotetraploids also display expression changes between the parents, indicating that transcriptome divergence is reconciled during allopolyploid formation. Moreover, >65% of the nonadditively expressed genes in the allotetraploids are repressed, and >94% of the repressed genes in the allotetraploids match the genes that are expressed at higher levels in A. thaliana than in A. arenosa, consistent with the silencing of A. thaliana rRNA genes subjected to nucleolar dominance and with overall suppression of the A. thaliana phenotype in the synthetic allotetraploids and natural A. suecica. The nonadditive gene regulation is involved in various biological pathways, and the changes in gene expression are developmentally regulated. In contrast to the small effects of genome doubling on gene regulation in autotetraploids, the combination of two divergent genomes in allotetraploids by interspecific hybridization induces genomewide nonadditive gene regulation, providing a molecular basis for de novo variation and allopolyploid evolution.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Poliploidia , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Evolução Biológica , Hibridização Genética , Análise de Sequência com Séries de Oligonucleotídeos , Polimorfismo Conformacional de Fita Simples , RNA de Plantas/genética , RNA de Plantas/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
3.
Methods Enzymol ; 395: 570-96, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-15865985

RESUMO

Polyploidy is an evolutionary innovation, providing extra sets of genetic material for phenotypic variation and adaptation. It is predicted that changes of gene expression by genetic and epigenetic mechanisms are responsible for novel variation in nascent and established polyploids (Liu and Wendel, 2002; Osborn et al., 2003; Pikaard, 2001). Studying gene expression changes in allopolyploids is more complicated than in autopolyploids, because allopolyploids contain more than two sets of genomes originating from divergent, but related, species. Here we describe two methods that are applicable to the genome-wide analysis of gene expression differences resulting from genome duplication in autopolyploids or interactions between homoeologous genomes in allopolyploids. First, we describe an amplified fragment length polymorphism (AFLP)--complementary DNA (cDNA) display method that allows the discrimination of homoeologous loci based on restriction polymorphisms between the progenitors. Second, we describe microarray analyses that can be used to compare gene expression differences between the allopolyploids and respective progenitors using appropriate experimental design and statistical analysis. We demonstrate the utility of these two complementary methods and discuss the pros and cons of using the methods to analyze gene expression changes in autopolyploids and allopolyploids. Furthermore, we describe these methods in general terms to be of wider applicability for comparative gene expression in a variety of evolutionary, genetic, biological, and physiological contexts.


Assuntos
Perfilação da Expressão Gênica/métodos , Poliploidia , Arabidopsis/genética , Sequência de Bases , DNA Complementar/genética , DNA de Plantas/genética , Genoma de Planta , Técnicas de Amplificação de Ácido Nucleico , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Reação em Cadeia da Polimerase , Polimorfismo Genético , RNA Mensageiro/genética , RNA Mensageiro/isolamento & purificação , RNA de Plantas/genética , RNA de Plantas/isolamento & purificação
4.
Genetics ; 167(4): 1961-73, 2004 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15342533

RESUMO

Polyploidization is an abrupt speciation mechanism for eukaryotes and is especially common in plants. However, little is known about patterns and mechanisms of gene regulation during early stages of polyploid formation. Here we analyzed differential expression patterns of the progenitors' genes among successive selfing generations and independent lineages. The synthetic Arabidopsis allotetraploid lines were produced by a genetic cross between A. thaliana and A. arenosa autotetraploids. We found that some progenitors' genes are differentially expressed in early generations, whereas other genes are silenced in late generations or among different siblings within a selfing generation, suggesting that the silencing of progenitors' genes is rapidly and/or stochastically established. Moreover, a subset of genes is affected in autotetraploid and multiple independent allotetraploid lines and in A. suecica, a natural allotetraploid derived from A. thaliana and A. arenosa, indicating locus-specific susceptibility to ploidy-dependent gene regulation. The role of DNA methylation in silencing progenitors' genes is tested in DNA-hypomethylation transgenic lines of A. suecica using RNA interference (RNAi). Two silenced genes are reactivated in both ddm1- and met1-RNAi lines, consistent with the demethylation of centromeric repeats and gene-specific regions in the genome. A rapid and stochastic process of differential gene expression is reinforced by epigenetic regulation during polyploid formation and evolution.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas/genética , Poliploidia , Sequência de Bases , Clonagem Molecular , Primers do DNA , Inativação Gênica , Polimorfismo de Fragmento de Restrição , RNA de Plantas/genética , RNA Interferente Pequeno/genética , Processos Estocásticos
5.
Biol J Linn Soc Lond ; 82(4): 689-700, 2004 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18079994

RESUMO

Arabidopsis is a model system not only for studying numerous aspects of plant biology, but also for understanding mechanisms of the rapid evolutionary process associated with genome duplication and polyploidization. Although in animals interspecific hybrids are often sterile and aneuploids are related to disease syndromes, both Arabidopsis autopolyploids and allopolyploids occur in nature and can be readily formed in the laboratory, providing an attractive system for comparing changes in gene expression and genome structure among relatively 'young' and 'established' or 'ancient' polyploids. Powerful reverse and forward genetics in Arabidopsis offer an exceptional means by which regulatory mechanisms of gene and genome duplication may be revealed. Moreover, the Arabidopsis genome is completely sequenced; both coding and non-coding sequences are available. We have developed spotted oligo-gene and chromosome microarrays using the complete Arabidopsis genome sequence. The oligo-gene microarray consists of ~26 000 70-mer oligonucleotides that are designed from all annotated genes in Arabidopsis, and the chromosome microarray contains 1 kb genomic tiling fragments amplified from a chromosomal region or the complete sequence of chromosome 4. We have demonstrated the utility of microarrays for genome-wide analysis of changes in gene expression, genome organization and chromatin structure in Arabidopsis polyploids and related species.

6.
Plant Biotechnol J ; 2(1): 45-57, 2004 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17166142

RESUMO

Synthetic oligonucleotides (oligos) represent an attractive alternative to cDNA amplicons for spotted microarray analysis in a number of model organisms, including Arabidopsis, C. elegans, Drosophila, human, mouse and yeast. However, little is known about the relative effectiveness of 60-70-mer oligos and cDNAs for detecting gene expression changes. Using 192 pairs of Arabidopsis thaliana cDNAs and corresponding 70-mer oligos, we performed three sets of dye-swap experiments and used analysis of variance (anova) to compare sources of variation and sensitivities for detecting gene expression changes in A. thaliana, A. arenosa and Brassica oleracea. Our major findings were: (1) variation among different RNA preparations from the same tissue was small, but large variation among dye-labellings and slides indicates the need to replicate these factors; (2) sources of variation were similar for experiments with all three species, suggesting these feature types are effective for analysing gene expression in related species; (3) oligo and cDNA features had similar sensitivities for detecting expression changes and they identified a common subset of significant genes, but results from quantitative RT-PCR did not support the use of one over the other. These findings indicate that spotted oligos are at least as effective as cDNAs for microarray analyses of gene expression. We are using oligos designed from approximately 26,000 annotated genes of A. thaliana to study gene expression changes in Arabidopsis and Brassica polyploids.

7.
Trends Genet ; 19(3): 141-7, 2003 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-12615008

RESUMO

Polyploidy has long been recognized as a prominent force shaping the evolution of eukaryotes, especially flowering plants. New phenotypes often arise with polyploid formation and can contribute to the success of polyploids in nature or their selection for use in agriculture. Although the causes of novel variation in polyploids are not well understood, they could involve changes in gene expression through increased variation in dosage-regulated gene expression, altered regulatory interactions, and rapid genetic and epigenetic changes. New research approaches are being used to study these mechanisms and the results should provide a more complete understanding of polyploidy.


Assuntos
Regulação da Expressão Gênica , Plantas/genética , Poliploidia , Evolução Biológica , Dosagem de Genes , Genes de Plantas , Variação Genética , Genoma de Planta , Modelos Genéticos , Seleção Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...