Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 21(21)2021 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-34770295

RESUMO

Terahertz (THz) imaging techniques are attractive for a wide range of applications, such as non-destructive testing, biological sensing, and security imaging. We investigate practical issues in THz imaging systems based on a solid immersion lens (SIL). The system stability in terms of longitudinal misalignment of the SIL is experimentally verified by showing that the diffraction-limited sub-wavelength beam size (0.7 λ) is maintained as long as the SIL is axially located within the depth-of-focus (~13 λ) of the objective lens. The origin of the fringe patterns, which are undesirable but inevitable in THz imaging systems that use continuous waves, is analytically studied, and a method for minimizing the interference patterns is proposed. By combining two THz images obtained at different axial positions of the object and separated by λ/4, the interference patterns are significantly reduced, and the information hidden under the interference patterns is unveiled. The broad applicability of the proposed method is demonstrated by imaging objects with different surface profiles. Our work proves that the resolution of conventional THz imaging systems can easily be enhanced by simply inserting a SIL in front of the object with high tolerance in the longitudinal misalignment and provides a method enabling THz imaging for objects with different surface profiles.

2.
ACS Appl Mater Interfaces ; 13(15): 18056-18064, 2021 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-33827208

RESUMO

Two-dimensional transition metal dichalcogenides (TMDs) offer numerous advantages over silicon-based application in terms of atomically thin geometry, excellent opto-electrical properties, layer-number dependence, band gap variability, and lack of dangling bonds. The production of high-quality and large-scale TMD films is required with consideration of practical technology. However, the performance of scalable devices is affected by problems such as contamination and patterning arising from device processing; this is followed by an etching step, which normally damages the TMD film. Herein, we report the direct growth of MoSe2 films on selective pattern areas via a surface-mediated liquid-phase promoter using a solution-based approach. Our growth process utilizes the promoter on the selective pattern area by enhancing wettability, resulting in a highly uniform MoSe2 film. Moreover, our approach can produce other TMD films such as WSe2 films as well as control various pattern shapes, sizes, and large-scale areas, thus improving their applicability in various devices in the future. Our patterned MoSe2 field-effect transistor device exhibits a p-type dominant conduction behavior with a high on/off current ratio of ∼106. Thus, our study provides general guidance for direct selective pattern growth via a solution-based approach and the future design of integrated devices for a large-scale application.

3.
ACS Nano ; 14(6): 7574-7580, 2020 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-32401483

RESUMO

Two-dimensional (2D) layered materials with properties such as a large surface-to-volume ratio, strong light interaction, and transparency are expected to be used in future optoelectronic applications. Many studies have focused on ways to increase absorption of 2D-layered materials for use in photodetectors. In this work, we demonstrate another strategy for improving photodetector performance using a graphene/MoS2 heterojunction phototransistor with a short channel length and a tunable Schottky barrier. The channel length of sub-30 nm, shorter than the diffusion length, decreases carrier recombination and carrier transit time in the channel and improves phototransistor performance. Furthermore, our graphene/MoS2 heterojunction phototransistor employed a tunable Schottky barrier that is only controlled by light and gate bias. It maintains a low dark current and an increased photocurrent. As a result, our graphene/MoS2 heterojunction phototransistor showed ultrahigh responsivity and detectivity of 2.2 × 105 A/W and 3.5 × 1013 Jones, respectively. This is a considerable improvement compared to previous pristine MoS2 phototransistors. We confirmed an effective method to develop phototransistors based on 2D materials and obtained ultrahigh performance of our phototransistor, which is promising for high-performance optoelectronic applications.

4.
ACS Appl Mater Interfaces ; 12(9): 10772-10780, 2020 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-32013378

RESUMO

Graphene is one of the most promising materials for photodetectors due to its ability to convert photons into hot carriers within approximately 50 fs and generate long-lived thermalized states with lifetimes longer than 1 ps. In this study, we demonstrate a wide range of vertical photodetectors having a graphene/h-BN/Au heterostructure in which an hexagonal boron nitride (h-BN) insulating layer is inserted between an Au electrode and graphene photoabsorber. The photocarriers effectively tunnel through the small hole barrier (1.93 eV) at the Au/h-BN junction while the dark carriers are highly suppressed by a large electron barrier (2.27 eV) at the graphene/h-BN junction. Thus, an extremely low dark current of ∼10-13 A is achieved, which is 8 orders of magnitude lower than that of graphene lateral photodetector devices (∼10-5 A). Also, our device displays an asymmetric photoresponse behavior due to photothermionic emission at the graphene/h-BN and Au/h-BN junctions. The asymmetric behavior generates additional thermal carriers (hot carriers) to enable our device to generate photocurrents that can overcome the Schottky barrier. Furthermore, our device shows the highest value of the Iph/Idark ratio of ∼225 at 7 nm thick h-BN insulating layer, which is 3 orders of magnitude larger than that of the previously reported graphene lateral photodetectors without any active materials. In addition, we achieve a fast response speed of 12 µs of rise time and 5 µs of fall time, which are about 100 times faster than those of other graphene integrated photodetectors.

5.
ACS Appl Mater Interfaces ; 12(2): 2854-2861, 2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31855598

RESUMO

A single-layer MoS2 achieves excellent gate controllability within the nanoscale channel length of a field-effect transistor (FET) owing to an ultra-short screening length. However, multilayer MoS2 (ML-MoS2) is more vulnerable to short channel effects (SCEs) owing to its thickness and long screening length. We eliminated the SCEs in an ML-MoS2 FET (thickness of 4-13 nm) at a channel length of sub-30 nm using a Schottky barrier (SB) variable graphene/ML-MoS2 heterojunction. Although the band modulation in the ML-MoS2 channel worsens with a decrease in the channel length, which is similar to the SCEs occurring in conventional FETs, the variable Fermi level (EF) of a graphene electrode along the gate voltage allows control of the SB at the graphene/MoS2 junction and backs up the current modulation through a variable SB. Electrical measurements and a theoretical band simulation demonstrate the efficient SB modulation of our graphene nanogap (GrNG) ML-MoS2 FET with three distinct carrier transports along Vgs: a thermionic emission at a low SB, Fowler-Nordheim tunneling at a moderate SB, and direct tunneling at a high SB. Our GrNG FET shows an extremely high on-off current ratio of ∼108, which is approximately three-orders of magnitude better than a previously reported metal nanogap (MeNG) FET and a self-aligned metal/graphene nanogap FET with a similar MoS2 thickness. Our GrNG FET also exhibits a 100,000-times higher on-off ratio, 100-times lower subthreshold swing, and 10-times lower drain induced barrier.

6.
ACS Nano ; 13(8): 9638-9646, 2019 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-31345021

RESUMO

In the past decade, intensive studies on monolayer MoS2-based phototransistors have been carried out to achieve further enhanced optoelectronic characteristics. However, the intrinsic optoelectronic characteristics of monolayer MoS2 have still not been explored until now because of unintended interferences, such as multiple reflections of incident light originating from commonly used opaque substrates. This leads to overestimated photoresponsive characteristics inevitably due to the enhanced photogating and photoconductive effects. Here, we reveal the intrinsic photoresponsive characteristics of monolayer MoS2, including its internal responsivity and quantum efficiency, in fully transparent monolayer MoS2 phototransistors employing a van der Waals heterostructure. Interestingly, as opposed to the previous reports, the internal photoresponsive characteristics do not significantly depend on the wavelength of the incident light as long as the electron-hole pairs are generated in the same k-space. This study provides a deeper understanding of the photoresponsive characteristics of MoS2 and lays the foundation for two-dimensional materials-based transparent phototransistors.

7.
ACS Nano ; 13(7): 8392-8400, 2019 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-31241306

RESUMO

Piezoelectricity of transition metal dichalcogenides (TMDs) under mechanical strain has been theoretically and experimentally studied. Powerful strain sensors using Schottky barrier variation in TMD/metal junctions as a result of the strain-induced lattice distortion and associated ion-charge polarization were demonstrated. However, the nearly fixed work function of metal electrodes limits the variation range of a Schottky barrier. We demonstrate a highly sensitive strain sensor using a variable Schottky barrier in a MoS2/graphene heterostructure field effect transistor (FET). The low density of states near the Dirac point in graphene allows large modulation of the graphene Fermi level and corresponding Schottky barrier in a MoS2/graphene junction by strain-induced polarized charges of MoS2. Our theoretical simulations and temperature-dependent electrical measurements show that the Schottky barrier change is maximized by placing the Fermi level of the graphene at the charge neutral (Dirac) point by applying gate voltage. As a result, the maximum Schottky barrier change (ΔΦSB) and corresponding current change ratio under 0.17% strain reach 118 meV and 978, respectively, resulting in an ultrahigh gauge factor of 575 294, which is approximately 500 times higher than that of metal/TMD junction strain sensors (1160) and 140 times higher than the conventional strain sensors (4036). The ultrahigh sensitivity of graphene/MoS2 heterostructure FETs can be developed for next-generation electronic and mechanical-electronic devices.

8.
Opt Express ; 27(10): 14695-14704, 2019 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-31163914

RESUMO

A terahertz continuous wave system is demonstrated for thickness measurement using Gouy phase shift interferometry without frequency sweep. One arm of the interferometer utilizes a collimated wave as a reference, and the other arm applies a focused beam for sample investigation. When the optical path difference (OPD) of the arms is zero, a destructive interference pattern is produced. Interference signal intensity changes induced by the OPD changes can be easily predicted by calculations. By minimizing the difference between the measured and the calculated signal against the OPD, the thicknesses of sub-100-µm-thick samples are determined at 625 GHz.

9.
Opt Express ; 27(2): 1718-1726, 2019 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-30696233

RESUMO

Photonic devices that exhibit all-optically reconfigurable polarization dependence with a large dynamic range would be highly attractive for active polarization control. Here, we report that strongly polarization-selective nonlinear optomechanical interactions emerge in subwavelength waveguides. By using full-vectorial finite element analysis, we find, at certain core ellipticities (or aspect ratios), that the forward simulated light scattering mediated by a specific acoustic resonance mode is eliminated for one polarization mode. Whereas, that for the other polarization mode is rather enhanced. This intriguing phenomenon can be explained by the interplay between the electrostrictive force and radiation pressure and turns out to be tailorable by the choice of waveguide materials.

10.
Nanotechnology ; 29(47): 47LT01, 2018 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-30211691

RESUMO

Rectifiers have been used to detect electromagnetic waves with very low photon energies. In these rectifying devices, different methods have been utilized, such as adjusting the bandgap and the doping profile, or utilizing the contact potential of the metal-semiconductor junction to produce current flow depending on the direction of the electric field. In this paper, it is shown that the asymmetric application of nano-electrodes to a metal-semiconductor-metal (MSM) structure can produce such rectification characteristics, and a terahertz (THz) wave detector based on the nano-MSM structure is proposed. Integrated with a receiving antenna, the fabricated device detects THz radiation up to a frequency of 1.5 THz with responsivity and noise equivalent power of 10.8 V/W and [Formula: see text] respectively, estimated at 0.3 THz. The unidirectional current flow is attributed to the thermionic emission of hot carriers accelerated by the locally enhanced THz field at the sharp end of the nano-electrode. This work not only demonstrates a new type of THz detector but also proposes a method for manipulating ultrafast charge-carrier dynamics through the field enhancement of the nano-electrode, which can be applied to ultrafast photonic and electronic devices.

11.
Sci Rep ; 5: 13817, 2015 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-26347288

RESUMO

Photoconductive antennas with nano-structured electrodes and which show significantly improved performances have been proposed to satisfy the demand for compact and efficient terahertz (THz) sources. Plasmonic field enhancement was previously considered the dominant mechanism accounting for the improvements in the underlying physics. However, we discovered that the role of plasmonic field enhancement is limited and near-field distribution of bias field should be considered as well. In this paper, we clearly show that the locally enhanced bias field due to the size effect is much more important than the plasmonic enhanced absorption in the nano-structured electrodes for the THz emitters. Consequently, an improved nano-electrode design is presented by tailoring bias field distribution and plasmonic enhancement. Our findings will pave the way for new perspectives in the design and analysis of plasmonic nano-structures for more efficient THz photonic devices.

12.
Nanotechnology ; 26(31): 315203, 2015 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-26183858

RESUMO

An active terahertz (THz) wave hybrid grating structure of Au/Ti metallic grating on VO2/Al2O3 (0001) was fabricated and evaluated. In our structure, it is shown that the metallic gratings on the VO2 layer strengthen the metallic characteristics to enhance the contrast of the metallic and dielectric phases of a VO2-based device. Especially, the metal grating-induced optical conductivity of the device is greatly enhanced, three times more than that of a metallic phase of bare VO2 films in the 0.1-2.0 THz spectral range. As an illustrative example, we fabricated an actively on/off switchable THz linear polarizer. The fabricated device has shown commercially comparable values in degree of polarization (DOP) and extinction ratio (ER). A high value of 0.89 in the modulation depth (MD) for the transmission field amplitude, superior to other THz wave modulators, is achieved. The experimental results show that the fabricated device can be highly useful in many applications, including active THz linear polarizers, THz wave modulators and variable THz attenuators.

13.
Opt Express ; 23(2): 846-58, 2015 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-25835845

RESUMO

In this study, inspired by the frequency-modulated continuous-wave (FMCW) method, an operation scheme of continuous-wave (CW) terahertz (THz) homodyne system is proposed and evaluated. For this purpose, we utilized the fast and stable wavelength tuning characteristics of a dual-mode laser (DML) as a beating source. Using the frequency-modulated THz waves generated by DML, a cost-effective and robust operation of CW THz system to be applicable to the measurements of thickness or refractive index of a sample is demonstrated. We believe that the proposed scheme shows a potential to the implementations of compact and fast CW THz measurement systems that can be useful in many THz applications.

14.
Opt Express ; 22(23): 28977-83, 2014 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-25402136

RESUMO

We demonstrate real-time continuous-wave terahertz (THz) line-scanned imaging based on a 1 × 240 InGaAs Schottky barrier diode (SBD) array detector with a scan velocity of 25 cm/s, a scan line length of 12 cm, and a pixel size of 0.5 × 0.5 mm². Foreign substances, such as a paper clip with a spatial resolution of approximately 1 mm that is hidden under a cracker, are clearly detected by this THz line-scanning system. The system consists of the SBD array detector, a 200-GHz gyrotron source, a conveyor system, and several optical components such as a high-density polyethylene cylindrical lens, metal cylindrical mirror, and THz wire-grid polarizer. Using the THz polarizer, the signal-to-noise ratio of the SBD array detector improves because the quality of the source beam is enhanced.


Assuntos
Arsenicais/química , Sistemas Computacionais , Eletrônica/instrumentação , Gálio/química , Índio/química , Fenômenos Ópticos , Radiação Terahertz
15.
Opt Express ; 22(7): 8383-95, 2014 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-24718212

RESUMO

Hybrid characteristics of propagating surface plasmons (PSPs) and localized surface plasmons (LSPs) appear at a combined structure of a thin silver (Ag) layer and silver core/silica shell nanocubes (AgNC@SiO(2)s) in the Kretschmann configuration, because the resonant condition of PSPs on the thin Ag layer is significantly modified by LSPs of the AgNC@SiO(2)s. We investigate theoretically and experimentally that due to the hybrid property, the slope and position of the minimum reflectance band can be controlled on a graph of incident angle versus wavelength of reflected light, by changing structural parameters. The hybrid properties of PSPs and LSPs have a potential to simultaneously detect surface plasmon resonance signals and fluorescence images.

16.
Sci Rep ; 4: 3696, 2014 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-24424276

RESUMO

There has been a significant interest on plasmonics in a metallic structure with very narrow gaps for studies of nanophotonics. However, little attention has been paid to the behavior of surface plasmons (SPs) in quasi-continuous metallic structures. This study observes and analyzes intermediate characteristics between propagating SPs (PSPs) and localized SPs (LSPs) in a quasi-continuous metallic monolayer of core-shell nanocubes. We reveal that, in a very narrow region of few-nanometer gaps among the nanocubes, the intrinsic energy bands of PSPs and LSPs intersect each other to generate two hybrid bands and an anti-crossing. Using a self-assembly method instead of the lithographic techniques which have several limitations as of now, we materialize the quasi-continuous metallic layer with plenty of nano-gaps that exhibit intermediate plasmonic characteristics. The intermediate plasmonic characteristics observed in this study will lead to interesting subjects, such as band engineering and slow SPs, in nanophotonics.

17.
Opt Lett ; 38(24): 5466-9, 2013 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-24343018

RESUMO

A novel buried photomixer for integrated photonic terahertz devices is proposed. The active region of the mesa-structure InGaAs photomixer is buried in an InP layer grown by metalorganic chemical vapor deposition (MOCVD) to improve heat dissipation, which is an important problem for terahertz photomixers. The proposed photomixer shows good thermal properties compared to a conventional planar-type photomixer. The MOCVD regrowth process indicates the possibility for THz photomixers to be integrated monolithically with conventional photonic devices.

18.
Opt Express ; 21(18): 20762-70, 2013 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-24103949

RESUMO

We propose a novel metal-insulator-metal (MIM) waveguide mode transition scheme by the use of the abrupt junction of MIM plasmonic waveguide. Power coupling between anti-symmetric plasmonic mode and fundamental photonic mode can be easily done by reflection at the waveguide junction with an oblique MIM mode incidence due to the field intersection between those modes. With numerical simulation we find that mode conversion efficiency can be obtained up to 60% for single junction geometry, and it can be further increased up to 82% with the suppression of non-transited mode by adapting Bragg grating structure composed of periodical arranges of MIM junctions.

19.
Opt Express ; 21(16): 18797-804, 2013 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-23938794

RESUMO

We investigate the finite power Airy beams generated by finite extent input beams such as a Gaussian beam, a uniform beam of finite extent, and an inverse Gaussian beam. Each has different propagation behavior: A finite Airy beam generated by a uniform input beam keeps its Airy profile much longer than the conventional finite Airy beam. Also, an inverse Gaussian beam generates a finite Airy beam with a good bent focusing in free space. In this paper, the analysis and experimental results of finite Airy beams are presented.

20.
Opt Express ; 21(13): 15205-12, 2013 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-23842306

RESUMO

We propose a novel approach to generate and tune a hot spot in a dipole nanostructure of vanadium dioxide (VO2) laid on a gold (Au) substrate. By inducing a phase transition of the VO2, the spatial and spectral distributions of the hot spot generated in the feed gap of the dipole can be tuned. Our numerical simulation based on a finite-element method shows a strong intensity enhancement difference and tunability near the wavelength of 678 nm, where the hot spot shows 172-fold intensity enhancement when VO2 is in the semiconductor phase. The physical mechanisms of forming the hot spots at the two-different phases are discussed. Based on our analysis, the effects of geometric parameters in our dipole structure are investigated with an aim of enhancing the intensity and the tunability. We hope that the proposed nanostructure opens up a practical approach for the tunable near-field nano-photonic devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...