Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Condens Matter ; 36(26)2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38547530

RESUMO

We computed the phase diagram of zigzag graphene nanoribbons as a function of on-site repulsion, doping, and disorder strength. The topologically ordered phase undergoes topological phase transitions into crossover phases, which are new disordered phases with non-universal topological entanglement entropy that exhibits significant variance. We explored the nature of non-local correlations in both the topologically ordered and crossover phases. In the presence of localization effects, strong on-site repulsion and/or doping weaken non-local correlations between the opposite zigzag edges of the topologically ordered phase. In one of the crossover phases, bothe-/2solitonic fractional charges and spin-charge separation were absent; however, charge-transfer correlations between the zigzag edges were possible. Another crossover phase contains solitonice-/2fractional charges but lacks charge transfer correlations. We also observed properties of non-topological, strongly disordered, and strongly repulsive phases. Each phase on the phase diagram exhibits a different zigzag-edge structure. Additionally, we investigated the tunneling of solitonic fractional charges under an applied voltage between the zigzag edges of undoped topologically ordered zigzag ribbons, and found that it may lead to a zero-bias tunneling anomaly.

2.
Nano Lett ; 24(4): 1261-1267, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38242169

RESUMO

This work evaluates the feasibility of alkaline hydrogen evolution reaction (HER) using Pt single-atoms (1.0 wt %) on defect-rich ceria (Pt1/CeOx) as an active and stable dual-site catalyst. The catalyst displayed a low overpotential and a small Tafel slope in an alkaline medium. Moreover, Pt1/CeOx presented a high mass activity and excellent durability, competing with those of the commercial Pt/C (20 wt %). In this picture, the defective CeOx is active for water adsorption and dissociation to create H* intermediates, providing the first site where the reaction occurs. The H* intermediate species then migrate to adsorb and react on the Pt2+ isolated atoms, the site where H2 is formed and released. DFT calculations were also performed to obtain mechanistic insight on the Pt1/CeOx catalyst for the HER. The results indicate a new possibility to improve the state-of-the-art alkaline HER catalysts via a combined effect of the O vacancies on the ceria support and Pt2+ single atoms.

3.
J Colloid Interface Sci ; 657: 684-694, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38071817

RESUMO

Given the rapidly increasing energy demand and environmental pollution, to achieve energy conservation and emission reduction, hydrogen production has emerged as a promising alternative to traditional fossil fuels because of its high gravimetric energy density, and renewable and environmentally friendly characteristics. Herein, a core-shell hollow-sphere Fe3O4@FeP@nitrogen-doped-carbon (labeled as H-Fe3O4@FeP@NC) with a dual-interface, novel morphology, and superior conductivity is prepared as an advanced bi-functional electrocatalyst for electrochemical overall water splitting using a collaborative strategy comprising of facile self-assembly and phosphating. The prepared catalyst exhibits superior electrocatalytic activity compared to H-Fe3O4@NC and H-Fe3O4 for oxygen evolution reaction (OER) and hydrogen evolution reaction (HER). Additionally, the overpotential of H-Fe3O4@FeP@NC for OER/HER (258/165 mV at 10 mA/cm2) is significantly lower than those of H-Fe3O4@NC (274/209 mV) and H-Fe3O4 (287/213 mV) at 10 mA/cm2. Meanwhile, the as-synthesized H-Fe3O4@FeP@NC, as an electrode pair, displays a low cell voltage of 1.69 V at 10 mA/cm2 and excellent stability after 100 h, indicating its practical application for overall water splitting. This work presents a practical and economical strategy toward the fabrication of catalyst for efficient water splitting and fuel cell.

4.
Nanomaterials (Basel) ; 13(23)2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-38063703

RESUMO

Li metal is a promising anode candidate due to its high theoretical capacity and low electrochemical potential. However, dendrite formation and the resulting dead Li cause continuous Li consumption, which hinders its practical application. In this study, we realized N-doped nanoporous carbon for a stable Li metal host composed only of lightweight elements C and N through the simple calcination of a nitrogen-containing metal-organic framework (MOF). During the calcination process, we effectively controlled the amount of lithophilic N and the electrical conductivity of the N-doped porous carbons to optimize their performance as Li metal hosts. As a result, the N-doped porous carbon exhibited excellent electrochemical performances, including 95.8% coulombic efficiency and 91% capacity retention after 150 cycles in a full cell with an LFP cathode. The N-doped nanoporous carbon developed in this study can realize a stable Li metal host without adding lithium ion metals and metal oxides, etc., which is expected to provide an efficient approach for reliable Li metal anodes in secondary battery applications.

5.
ACS Appl Mater Interfaces ; 15(48): 55965-55974, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-37978916

RESUMO

Monolithic integration of GaSb-based optoelectronic devices on Si is a promising approach for achieving a low-cost, compact, and scalable infrared photonics platform. While tremendous efforts have been put into reducing dislocation densities by using various defect filter layers, exploring other types of extended crystal defects that can exist on GaSb/Si buffers has largely been neglected. Here, we show that GaSb growth on Si generates a high density of micro-twin (MT) defects as well as threading dislocations (TDs) to accommodate the extremely large misfit between GaSb and Si. We found that a 250 nm AlSb single insertion layer is more effective than AlSb/GaSb strained superlattices in reducing both types of defects, resulting in a 4× and 13× reduction in TD density and MT density, respectively, compared with a reference sample with no defect filter layer. InGaSb quantum well light-emitting diodes were grown on the GaSb/Si templates, and the effect of TD density and MT density on their performance was studied. This work shows the importance of using appropriate defect filter layers for high performance GaSb-based optoelectronic devices on standard on-axis (001) Si via direct epitaxial growth.

6.
Entropy (Basel) ; 25(10)2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37895570

RESUMO

Graphene zigzag nanoribbons, initially in a topologically ordered state, undergo a topological phase transition into crossover phases distinguished by quasi-topological order. We computed mutual information for both the topologically ordered phase and its crossover phases, revealing the following results: (i) In the topologically ordered phase, A-chirality carbon lines strongly entangle with B-chirality carbon lines on the opposite side of the zigzag ribbon. This entanglement persists but weakens in crossover phases. (ii) The upper zigzag edge entangles with non-edge lines of different chirality on the opposite side of the ribbon. (iii) Entanglement increases as more carbon lines are grouped together, regardless of the lines' chirality. No long-range entanglement was found in the symmetry-protected phase in the absence of disorder.

7.
RSC Adv ; 13(34): 24071-24076, 2023 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-37577101

RESUMO

We have successfully synthesized a novel form of polyglycerol with an unprecedentedly low degree of branching (DB = 0.08-0.18), eliminating the need for glycidol protection. Leveraging the remarkable efficiency and selectivity of our Cu(triNHC) catalyst, comprising copper(i) ions and NHC ligands, we achieved a highly selective polymerization process. The proposed Cu-coordination mechanisms presented the formation of linear L1,3 units while effectively suppressing dendritic units. Consequently, our pioneering approach yielded polyglycerol with an ultralow DB and exceptional yields. To comprehensively assess the physical properties and topology of the synthesized polyglycerol, we employed 1H diffusion-ordered spectroscopy, size-exclusion chromatography, and matrix-assisted laser desorption/ionization-time of flight spectrometry. Remarkably, the ultralow-branched cyclic polyglycerol (DB = 0.08) synthesized at 0 °C showcased extraordinary characteristics, exhibiting the lowest diffusion coefficient and the highest molecular weight. This achievement establishes the significant potential of our polyglycerol with a low degree of branching, revolutionizing the field of biocompatible polymers.

8.
Materials (Basel) ; 16(14)2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37512377

RESUMO

Owing to the increasing demand for the miniaturization and integration of electronic devices, thermal interface materials (TIMs) are crucial components for removing heat and improving the lifetime and safety of electronic devices. Among these, thermal pads are reusable alternatives to thermal paste-type TIMs; however, conventional thermal pads comprise a homogeneous polymer with low thermal conductivity. Composite materials of thermally conducting fillers and polymer matrices are considered suitable alternatives to high-performance pad materials owing to their controllable thermal properties. However, they degrade the thermal performance of the filler materials at high loading ratios via aggregation. In this study, we propose novel nanocomposites using densely aligned MgO nanowire fillers and polydimethylsiloxane (PDMS) matrices. The developed nanocomposites ensured the enhanced thermal conducting properties, while maintaining mechanical flexibility. The three-step preparation process involves the (i) fabrication of the MgO structure using a freeze dryer; (ii) compression of the MgO structure; and (iii) the infiltration of PDMS in the structure. The resulting aligned composites exhibited a superior thermal conductivity (approximately 1.18 W m-1K-1) to that of pure PDMS and composites with the same filler ratios of randomly distributed MgO fillers. Additionally, the MgO/PDMS composites exhibited adequate electrical insulating properties, with a room-temperature resistivity of 7.92 × 1015 Ω∙cm.

9.
Angew Chem Int Ed Engl ; 62(31): e202305414, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37259631

RESUMO

Precise control of multiple structural parameters associated with vinyl polymers is important for producing materials with the desired properties and functions. While the development of living polymerization methods has provided a way to control the various structural parameters of vinyl polymers, the concomitant control of their sequence and regioregularity remains a challenging task. To overcome this challenge, herein, we report the living cationic ring-opening polymerization of hetero Diels-Alder adducts. The scalable and modular synthesis of the cyclic monomers was achieved by a one-step protocol using readily available vinyl precursors. Subsequently, living polymerization of the cyclic monomers was examined, allowing the synthesis of vinyl polymers while controlling multiple factors, including molecular weight, dispersity, alternating sequence, head-to-head regioregularity, and end-group functionality. The living characteristics of the developed method were further demonstrated by block copolymerization. The synthesized vinyl polymers exhibited unique thermal properties and underwent fast photodegradation even under sunlight.

10.
Curr Res Food Sci ; 6: 100428, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36632435

RESUMO

Interest in using an antimicrobial photodynamic treatment (aPDT) for the microbial decontamination of food has been growing. In this study, quercetin, a substance found ubiquitously in plants, was used as a novel exogenous photosensitizer with 405 nm blue light (BL) for the aPDT on foodborne pathogens, and the inactivation mechanism was elucidated. The inactivation of Escherichia coli O157:H7 and Listeria monocytogenes in PBS solution by the quercetin and BL combination treatment reached a log reduction of 6.2 and more than 7.55 at 80 J/cm2 (68 min 21 s), respectively. When EDTA was added to investigate the reason for different resistance between two bacteria, the effect of aPDT was enhanced against E. coli O157:H7 but not L. monocytogenes. This result indicated that the lipopolysaccharide of Gram-negative bacteria operated as a protective barrier. It was experimentally demonstrated that quercetin generated the superoxide anion and hydrogen peroxide as the reactive oxygen species that oxidize and inactivate cell components. The damage to the bacterial cell membrane by aPDT was evaluated by propidium iodide, where the membrane integrity significantly (P < 0.05) decreased from 40 J/cm2 compared to control. In addition, DNA integrity of bacteria was significantly (P < 0.05) more decreased after aPDT than BL treatment. The inactivation results could be applied in liquid food industries for decontamination of foodborne pathogens, and the mechanisms data was potentially utilized for further studies about aPDT using quercetin.

11.
Nanomaterials (Basel) ; 14(1)2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38202473

RESUMO

The high capacity of electrodes allows for a lower mass of electrodes, which is essential for increasing the energy density of the batteries. According to this, silicon is a promising anode candidate for Li-ion batteries due to its high theoretical capacity. However, its practical application is hampered by the significant volume expansion of silicon during battery operation, resulting in pulverization and contact loss. In this study, we developed a stable Li-ion anode that not only solves the problem of the short lifetime of silicon but also preserves the initial efficiency by using silicon nanoparticles covered with glassy ZIF-4 (SZ-4). SZ-4 suppresses silicon pulverization, contact loss, etc. because the glassy ZIF-4 wrapped around the silicon nanoparticles prevents additional SEI formation outside the silicon surface due to the electrically insulating characteristics of glassy ZIF-4. The SZ-4 realized by a simple heat treatment method showed 74% capacity retention after 100 cycles and a high initial efficiency of 78.7%.

12.
Dalton Trans ; 51(43): 16620-16627, 2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36268818

RESUMO

Zinc-glutarate (ZnGA) is a promising catalyst that can form polymers from CO2 and epoxides, thereby contributing to the development of CO2 utilization technologies and future sustainability. One of the obstacles to commercializing ZnGA in polymer industries is its low catalytic activity. In this study, we introduced activated two-dimensional (2D) ZnGA to improve its catalytic activity in polymerization. The morphology-controlled 2D ZnGA was treated with H3Co(CN)6, and a porous granular-type Co-modified ZnGA (Co-ZnGA) was prepared. The morphology of 2D ZnGA is a prerequisite for the activation by H3Co(CN)6. The catalytic properties of Co-ZnGA were evaluated by copolymerization of various epoxides and CO2, and exhibited catalytic activity of 855, 1540, 1190, and 148 g g-cat-1 with propylene oxide, 1,2-epoxyhexane, 1,2-epoxybutane, and styrene oxide, respectively. This study provided a new strategy using 2D ZnGA instead of conventional ZnGA for increasing the catalytic activity in CO2 polymerization.

13.
Nanomaterials (Basel) ; 12(12)2022 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-35745377

RESUMO

The widely used ZnO quantum dots (QDs) as an electron transport layer (ETL) in quantum dot light-emitting diodes (QLEDs) have one drawback. That the balancing of electrons and holes has not been effectively exploited due to the low hole blocking potential difference between the valence band (VB) (6.38 eV) of ZnO ETL and (6.3 eV) of CdSe/ZnS QDs. In this study, ZnO QDs chemically reacted with capping ligands of oleic acid (OA) to decrease the work function of 3.15 eV for ZnO QDs to 2.72~3.08 eV for the ZnO-OA QDs due to the charge transfer from ZnO to OA ligands and improve the efficiency for hole blocking as the VB was increased up to 7.22~7.23 eV. Compared to the QLEDs with a single ZnO QDs ETL, the ZnO-OA/ZnO QDs double ETLs optimize the energy level alignment between ZnO QDs and CdSe/ZnS QDs but also make the surface roughness of ZnO QDs smoother. The optimized glass/ITO/PEDOT:PSS/PVK//CdSe/ZnS//ZnO-OA/ZnO/Ag QLEDs enhances the maximum luminance by 5~9% and current efficiency by 16~35% over the QLEDs with a single ZnO QDs ETL, which can be explained in terms of trap-charge limited current (TCLC) and the Fowler-Nordheim (F-N) tunneling conduction mechanism.

14.
ACS Nano ; 16(5): 7848-7860, 2022 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-35522525

RESUMO

Recently, various attempts have been made for light-to-fuels conversion, often with limited performance. Herein we report active and lasting three-factored hierarchical photocatalysts consisting of plasmon Au, ceria semiconductor, and graphene conductor for hydrogen production. The Au@CeO2/Gr2.0 entity (graphene outer shell thickness of 2.0 nm) under visible-light irradiation exhibits a colossal achievement (8.0 µmol mgcat-1 h-1), which is 2.2- and 14.3-fold higher than those of binary Au@CeO2 and free-standing CeO2 species, outperforming the currently available catalysts. Yet, it delivers a high maximum quantum yield efficiency of 38.4% at an incident wavelength of 560 nm. These improvements are unambiguously attributed to three indispensable effects: (1) the plasmon resonant energy is light-excited and transferred to produce hot electrons localizing near the surface of Au@CeO2, where (2) the high-surface-area Gr conductive shell will capture them to direct hydrogen evolution reactions, and (3) the active graphene hybridized on the defect-rich surface of Au@CeO2 favorably adsorbs hydrogen atoms, which all bring up thorough insight into the working of a ternary Au@CeO2/Gr catalyst system in terms of light-to-hydrogen conversion.

15.
Macromol Rapid Commun ; 43(12): e2100642, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34715722

RESUMO

Diversification of polymer structures is important for imparting various properties and functions to polymers, so as to realize novel applications of these polymers. In this regard, diversity-oriented polymerization (DOP) is a powerful synthetic strategy for producing diverse and complex polymer structures. Multicomponent polymerization (MCP) is a key method for realizing DOP owing to its combinatorial features and high efficiency. Among the MCP methods, Cu-catalyzed MCP (Cu-MCP) has recently paved the way for DOP by overcoming the synthetic challenges of the previous MCP methods. Here the emergence and progress of Cu-MCP, its current challenges, and future perspectives are discussed.


Assuntos
Polímeros , Catálise , Polimerização , Polímeros/química
16.
Nano Lett ; 21(23): 9909-9915, 2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34843258

RESUMO

While the orientation-dependent properties of semiconductor nanowires have been theoretically predicted, their study has long been overlooked in many fields owing to the limits to controlling the crystallographic growth direction of nanowires (NWs). We present here the orientation-controlled growth of single-crystalline germanium (Ge) NWs using a self-catalytic low-pressure chemical vapor deposition process. By adjusting the growth temperature, the orientation of growth direction in GeNWs was selectively controlled to the ⟨110⟩, ⟨112⟩, or ⟨111⟩ directions on the same substrate. The NWs with different growth directions exhibit distinct morphological features, allowing control of the NW morphology from uniform NWs to nanoribbon structures. Significantly, the VLS-based self-catalytic growth of the ⟨111⟩ oriented GeNW suggests that NW growth is possible for single elementary materials even without an appropriate external catalyst. Furthermore, these findings could provide opportunities to investigate the orientation-dependent properties of semiconductor NWs.

17.
ACS Appl Mater Interfaces ; 13(46): 55648-55655, 2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34779602

RESUMO

Current infrared thermal image sensors are mainly based on planar firm substrates, but the rigid form factor appears to restrain the versatility of their applications. For wearable health monitoring and implanted biomedical sensing, transfer of active device layers onto a flexible substrate is required while controlling the high-quality crystalline interface. Here, we demonstrate high-detectivity flexible InAs thin-film mid-infrared photodetector arrays through high-yield wafer bonding and a heteroepitaxial lift-off process. An abruptly graded InxAl1-xAs (0.5 < x < 1) buffer was found to drastically improve the lift-off interface morphology and reduce the threading dislocation density twice, compared to the conventional linear grading method. Also, our flexible InAs photodetectors showed excellent optical performance with high mechanical robustness, a peak room-temperature specific detectivity of 1.21 × 109 cm-Hz1/2/W at 3.4 µm, and excellent device reliability. This flexible InAs photodetector enabled by the heteroepitaxial lift-off method shows promise for next-generation thermal image sensors.

18.
Adv Sci (Weinh) ; 8(19): e2100640, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34363354

RESUMO

Noble metal-based surface-enhanced Raman spectroscopy (SERS) has enabled the simple and efficient detection of trace-amount molecules via significant electromagnetic enhancements at hot spots. However, the small Raman cross-section of various analytes forces the use of a Raman reporter for specific surface functionalization, which is time-consuming and limited to low-molecular-weight analytes. To tackle these issues, a hybrid SERS substrate utilizing Ag as plasmonic structures and GaN as charge transfer enhancement centers is presented. By the conformal printing of Ag nanowires onto GaN nanopillars, a highly sensitive SERS substrate with excellent uniformity can be fabricated. As a result, remarkable SERS performance with a substrate enhancement factor of 1.4 × 1011 at 10 fM for rhodamine 6G molecules with minimal spot variations can be realized. Furthermore, quantification and multiplexing capabilities without surface treatments are demonstrated by detecting harmful antibiotics in aqueous solutions. This work paves the way for the development of a highly sensitive SERS substrate by constructing complex metal-semiconductor architectures.


Assuntos
Antibacterianos/análise , Gálio/química , Nanopartículas Metálicas/química , Análise Espectral Raman/métodos , Biopolímeros/química , Tamanho da Partícula , Prata , Propriedades de Superfície
19.
J Am Chem Soc ; 143(11): 4100-4105, 2021 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-33687196

RESUMO

This work reports the functionalization of azide-alkyne click-based microporous organic polymer (CMOP). The generation of triazolium salts and successive deprotonation induced mesoionic carbene species in hollow CMOP (H-CMOP). Rh(I) species could be coordinated to the mesoionic carbene species to form H-CMOP-Rh, showing excellent heterogeneous catalytic performance in the stereoselective polymerization of arylacetylenes.

20.
Environ Sci Pollut Res Int ; 28(6): 6459-6469, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32996093

RESUMO

A simple oxidation method for preparing CuO nanodisks on a flexible Cu sheet is presented. The crystal structure of as-prepared CuO nanodisks was analyzed by X-ray diffraction. The elemental composition and surface morphology were documented by X-ray photoelectron spectroscopy, scanning, and transmission electron microscopy. The photocatalytic performance of flexible Cu/CuO nanodisks was tested to mediate the degradation of RhB and MB dyes. After 2nd recycling, an in situ transformation of the nanodisk surface leads to electron transfer between the conduction bands of Cu2O and CuO phase, accelerating the degradation of the dyes due to a more favorable electron-hole separation under different band gap engineering. The optical and electrochemical impedance analyses were conducted to examine the efficiency of photogenerated charge carrier separation. Additionally, in the photodegradation system of Cu/CuO nanodisks, the generation of superoxide radical (·O2-) is responsible for the dye degradation under daylight irradiation. The generation of the latter radical is energetically feasible since the conduction band of Cu2O (- 0.28 eV) is well-matching with the redox potential of O2/·O2- (- 0.28 eV). Consequently, it is concluded that the cyclic stability shows the usefulness of Cu/CuO nanodisk preparation for the dye degradation under daylight irradiation. Graphical abstract.


Assuntos
Corantes , Cobre , Fotólise , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...