Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Br J Pharmacol ; 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600628

RESUMO

BACKGROUND AND PURPOSE: The discovery of new bromo- and extra-terminal inhibitors presents new drugs to treat osteoarthritis (OA). EXPERIMENTAL APPROACH: The new drug, BBC0403, was identified in the DNA-encoded library screening system by searching for compounds that target BRD (bromodomain-containing) proteins. The binding force with BRD proteins was evaluated using time-resolved fluorescence energy transfer (TR-FRET) and binding kinetics assays. Subsequently, in vitro and ex vivo analyses demonstrated the effects of the BRD2 inhibitor, BBC0403, on OA. For animal experiments, medial meniscus destabilization was performed to create a 12-week-old male C57BL/6 mouse model, and intra-articular (i.a.) injections were administered. Histological and immunohistochemical analyses were then performed. The underlying mechanism was confirmed by gene set enrichment analysis (GSEA) using RNA-seq. KEY RESULTS: TR-FRET and binding kinetics assays revealed that BBC0403 exhibited higher binding specificity for BRD2 compared to BRD3 and BRD4. The anti-OA effects of BBC0403 were tested at concentrations of 5, 10 and 20 µM (no cell toxicity in the range tested). The expression of catabolic factors, prostaglandin E2 (PGE2) production and extracellular matrix (ECM) degradation was reduced. Additionally, the i.a. injection of BBC0403 prevented OA cartilage degradation in mice. Finally, BBC0403 was demonstrated to suppress NF-κB and MAPK signalling pathways. CONCLUSION AND IMPLICATIONS: This study demonstrated that BBC0403 is a novel BRD2-specific inhibitor and a potential i.a.-injectable therapeutic agent to treat OA.

2.
Biomed Pharmacother ; 166: 115426, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37666177

RESUMO

Osteoarthritis (OA) is induced by matrix degradation and inflammation mediated by bromo-domain-containing protein 4 (BRD4)-dependent catabolic factors. BRD4 acts as both a transcriptional regulator and an epigenetic reader. BBC0901 was identified as an inhibitor of BRD4 using a DNA-encoded library screening system. We aimed to demonstrate the effects of BBC0901 on OA pathogenesis by in vitro, ex vivo, and in vivo analyses. BBC0901 inhibited the expression of catabolic factors that degrade cartilage without significantly affecting the viability of mouse articular chondrocytes. Additionally, ex vivo experiments under conditions mimicking OA showed that BBC0901 suppressed extracellular matrix degradation. RNA sequencing analysis of gene expression patterns showed that BBC0901 inhibited the expression of catabolic factors, such as matrix metalloproteinases (MMPs) and cyclooxygenase (COX)2, along with reactive oxygen species (ROS) production. Furthermore, intra-articular (IA) injection of BBC0901 into the knee joint blocked osteoarthritic cartilage destruction by inhibition of MMP3, MMP13, COX2, interleukin (IL)6, and ROS production, thereby obstructing the nuclear factor kappa-light-chain-enhancer of activated B cell and mitogen activated protein kinase signaling. In conclusion, BBC0901-mediated BRD4 inhibition prevented OA development by attenuating catabolic signaling and hence, can be considered a promising IA therapeutic for OA.


Assuntos
Proteínas Nucleares , Osteoartrite , Animais , Camundongos , Ciclo-Oxigenase 2 , Inflamação , Interleucina-6 , Osteoartrite/tratamento farmacológico , Espécies Reativas de Oxigênio , Fatores de Transcrição , Proteínas que Contêm Bromodomínio/antagonistas & inibidores
3.
Mol Ther Nucleic Acids ; 32: 637-649, 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37207130

RESUMO

Targeting aberrant epigenetic programs that drive tumorigenesis is a promising approach to cancer therapy. DNA-encoded library (DEL) screening is a core platform technology increasingly used to identify drugs that bind to protein targets. Here, we use DEL screening against bromodomain and extra-terminal motif (BET) proteins to identify inhibitors with new chemotypes, and successfully identified BBC1115 as a selective BET inhibitor. While BBC1115 does not structurally resemble OTX-015, a clinically active pan-BET inhibitor, our intensive biological characterization revealed that BBC1115 binds to BET proteins, including BRD4, and suppresses aberrant cell fate programs. Phenotypically, BBC1115-mediated BET inhibition impaired proliferation in acute myeloid leukemia, pancreatic, colorectal, and ovarian cancer cells in vitro. Moreover, intravenous administration of BBC1115 inhibited subcutaneous tumor xenograft growth with minimal toxicity and favorable pharmacokinetic properties in vivo. Since epigenetic regulations are ubiquitously distributed across normal and malignant cells, it will be critical to evaluate if BBC1115 affects normal cell function. Nonetheless, our study shows integrating DEL-based small-molecule compound screening and multi-step biological validation represents a reliable strategy to discover new chemotypes with selectivity, efficacy, and safety profiles for targeting proteins involved in epigenetic regulation in human malignancies.

4.
Clin Transl Sci ; 14(5): 1747-1755, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34085761

RESUMO

DHP107 is a newly developed lipid-based oral formulation of paclitaxel. We evaluated the in vivo tissue pharmacokinetics (PKs) of DHP107 in mice and patients using positron emission tomography (PET). Radioisotope-labeled [3 H]DHP107 and [18 F]DHP107 for oral administration were formulated in the same manner as the manufacturing process of DHP107. In vivo tissue PK were assessed in healthy ICR mice and breast cancer xenografted SCID mice. Two patients with metastatic breast cancer were clinically evaluated for absorption at the target lesion after internal absorbed dose estimation. Whole-body PET/computed tomography data were acquired in healthy and xenografted mice and in patients up to 10-24 h after administration. Tissue [18 F]DHP107 signals were plotted against time and PK parameters were determined. The amounts of radioactivity in various organs and excreta were determined using a beta-counter and are expressed as the percentage of injected dose (ID). Oral [18 F]DHP107 was well-absorbed and reached the target lesion in mice and patients with breast cancer. Significant amounts of radioactivity were found in the stomach, intestine, and liver after oral administration of [3 H]- and [18 F]DHP107 in healthy mice. The [18 F]DHP107 reached a peak distribution of 0.7-0.8%ID in the tumor at 5.6-7.3 h in the xenograft model. The [18 F]DHP107 distribution in patients with metastatic breast cancer was the highest at 3-4 h postadministration. Systemic exposures after administration of a DHP107 therapeutic dose were comparable with those in previous studies. PET using radioisotope-labeled drug candidates is useful for drug development and can provide valuable information that can complement plasma PK data, particularly in early phase clinical trials.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Paclitaxel/farmacocinética , Administração Oral , Adulto , Animais , Neoplasias da Mama/patologia , Desenvolvimento de Medicamentos/métodos , Feminino , Radioisótopos de Flúor , Humanos , Camundongos , Imagem Molecular/métodos , Paclitaxel/administração & dosagem , Paclitaxel/química , Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos , Ensaios Antitumorais Modelo de Xenoenxerto
5.
J Vet Med Sci ; 82(5): 527-530, 2020 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-32249251

RESUMO

An oral paclitaxel formulation that overcomes the hypersensitivity reaction of paclitaxel has been evaluated for safety and efficacy in humans, but not in dogs. We present the first case report on the use of oral paclitaxel in dogs. In this study, oral paclitaxel was well-tolerated in four dogs with either transitional cell carcinoma or prostate cancer; adverse effects were limited to mild neutropenia. Each of the dogs had progressive disease at the end, but clinical responses, including changes in mass size and improvement of clinical symptoms, were confirmed in some of the animals following oral paclitaxel chemotherapy. Although this study is somewhat limited by a small sample size, it suggests that oral paclitaxel may be a chemotherapeutic option for malignant tumors in dogs.


Assuntos
Antineoplásicos Fitogênicos/uso terapêutico , Doenças do Cão/tratamento farmacológico , Paclitaxel/uso terapêutico , Neoplasias da Bexiga Urinária/veterinária , Animais , Cães , Feminino , Masculino , Neoplasias da Bexiga Urinária/tratamento farmacológico
6.
PLoS One ; 14(11): e0225095, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31743348

RESUMO

OBJECTIVE: This study aimed to develop a new oral paclitaxel formulation (DHP23002) and to evaluate its absorption and antitumor effects in a pancreatic tumor mouse model. METHODS: To investigate the oral absorption of DHP23002, a newly developed lipid-based orally active paclitaxel formulation, a pharmacokinetic study of DHP23002, was conducted in mice (62.5 and 125 mg/kg). Moreover, to evaluate the antitumor effect of DHP23002 in pancreatic cancer treatment, the drug was administered to female athymic nude mice at 0 (vehicle), 25, 62.5, and 125 mg/kg on alternate days; the efficacy of the agent was compared with the efficacy of intravenous Taxol® injections at 10 mg/kg once per week. After 3 weeks of administration, tumor growth in mice belonging to each group was further monitored for 4 weeks after discontinuing medication. Moreover, to examine paclitaxel (DHP23002) accumulation in the tumor tissue, the amount of paclitaxel in tumor/blood was quantified using liquid chromatography with quadruple-TOF mass spectrometry. RESULTS: In the mouse pharmacokinetic study, oral Taxol® showed a negligible absorption, whereas DHP23002 showed a high absorption rate dependent on dosage, with a bioavailability of approximately 40% at a dose of 62.5 mg/kg. In efficacy-related studies, DHP23002 administration at a dose of 25, 62.5, or 125 mg/kg on alternate days for 3 weeks showed a superior tumor inhibitory effect of 80%, 92%, and 97% in a xenograft mouse model, respectively, after 7 weeks. Paclitaxel accumulation in tumors persisted for >24 h in mice, when orally administered once at doses of 25, 62.5, and 125 mg/kg DHP23002. CONCLUSION: Oral chemotherapy with DHP23002 showed excellent absorption in animals owing to a strong antitumor activity in a pancreatic cancer mouse model. This demonstrates that paclitaxel is largely distributed and persists for a prolonged period at the tumor site owing to oral DHP23002 administration.


Assuntos
Composição de Medicamentos , Paclitaxel/administração & dosagem , Paclitaxel/uso terapêutico , Neoplasias Pancreáticas/tratamento farmacológico , Administração Oral , Animais , Linhagem Celular Tumoral , Feminino , Fluorescência , Humanos , Camundongos Nus , Paclitaxel/sangue , Paclitaxel/farmacocinética , Neoplasias Pancreáticas/patologia , Tubulina (Proteína)/metabolismo
7.
Regul Toxicol Pharmacol ; 103: 196-204, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30738088

RESUMO

DHP107, an oral formulation of paclitaxel, is effectively and systemically absorbed in intestinal endothelial cells. Although the in vivo efficacy of DHP107 has been reported, the potential toxicity of DHP107 has not been evaluated. Therefore, this study was conducted to evaluate the toxicity and toxicokinetics of DHP107 orally administered to ICR mice at 25, 50, and 100 mg/kg via once-weekly dosing for six weeks. DHP107-related clinical signs were observed in both sexes at 100 mg/kg. There were significant increases in the number of platelets and percentages of reticulocytes and basophils in male mice. Also in males, there was a significant decrease in the absolute and relative weights of testes, epididymides, kidneys, and heart. Relative spleen weights were significantly increased in males treated with doses ≥50 mg/kg which had histopathological correlates. These changes were reversible after a two-week recovery period with the exception of the findings in the reproductive organs. Systemic exposure to paclitaxel increased with DHP107 doses in single and multiple dosing with no marked differences between sexes. In conclusion, the target organs were determined to be the reproductive and hematopoietic organs in male mice, suggesting of sex difference and the NOAEL of DHP107 was established to be < 25 mg/kg for males and 50 mg/kg for females.


Assuntos
Antineoplásicos Fitogênicos/toxicidade , Paclitaxel/toxicidade , Administração Oral , Animais , Antineoplásicos Fitogênicos/administração & dosagem , Relação Dose-Resposta a Droga , Feminino , Masculino , Camundongos , Camundongos Endogâmicos ICR , Tamanho do Órgão/efeitos dos fármacos , Paclitaxel/administração & dosagem , Toxicocinética
8.
Theranostics ; 8(21): 6008-6024, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30613278

RESUMO

Extra domain B of fibronectin (FN-EDB) is upregulated in the extracellular matrix during tissue remodeling and has been postulated as a potential biomarker for atherosclerosis, yet no systematic test for FN-EDB in plaques has been reported. We hypothesized that FN-EDB expression would intensify in advanced plaques. Furthermore, engineering of FN-EDB-targeted nanoparticles (NPs) could enable imaging/diagnosis and local delivery of payloads to plaques. Methods: The amount of FN-EDB in human atherosclerotic and normal arteries (ages: 40 to 85 years) was assessed by histological staining and quantification using an FN-EDB-specific aptide (APTFN-EDB). FN-EDB-specific NPs that could serve as MRI beacons were constructed by immobilizing APTFN-EDB on the NP surface containing DTPA[Gd]. MRI visualized APTFN-EDB-[Gd]NPs administered to atherosclerotic apolipoprotein E-deficient mice in the brachiocephalic arteries. Analysis of the ascending-to-descending thoracic aortas and the aortic roots of the mice permitted quantitation of Gd, FN-EDB, and APTFN-EDB-[Gd]NPs. Cyanine, a model small molecule drug, was used to study the biodistribution and pharmacokinetics of APTFN-EDB-NPs to evaluate their utility for drug delivery. Results: Atherosclerotic tissues had significantly greater FN-EDB-positive areas than normal arteries (P < 0.001). This signal pertained particularly to Type III (P < 0.01), IV (P < 0.01), and V lesions (P < 0.001) rather than Type I and II lesions (AHA classification). FN-EDB expression was positively correlated with macrophage accumulation and neoangiogenesis. Quantitative analysis of T1-weighted images of atherosclerotic mice revealed substantial APTFN-EDB-[Gd]NPs accumulation in plaques compared to control NPs, conventional MRI contrast agent (Gd-DTPA) or accumulation in wild-type C57BL/6J mice. Additionally, the APTFN-EDB-NPs significantly prolonged the blood-circulation time (t1/2: ~ 6 h) of a model drug and increased its accumulation in plaques (6.9-fold higher accumulation vs. free drug). Conclusions: Our findings demonstrate augmented FN-EDB expression in Type III, IV, and V atheromata and that APTFN-EDB-NPs could serve as a platform for identifying and/or delivering agents locally to a subset of atherosclerotic plaques.


Assuntos
Aterosclerose/diagnóstico por imagem , Aterosclerose/tratamento farmacológico , Fibronectinas/metabolismo , Imagem Molecular/métodos , Terapia de Alvo Molecular/métodos , Nanopartículas/metabolismo , Placa Aterosclerótica/diagnóstico por imagem , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Aptâmeros de Peptídeos/administração & dosagem , Aptâmeros de Peptídeos/metabolismo , Modelos Animais de Doenças , Feminino , Fibronectinas/análise , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Ligação Proteica
9.
Adv Healthc Mater ; 6(20)2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28730752

RESUMO

The pharmacological manipulation of liver X receptors (LXRs) has been an attractive therapeutic strategy for atherosclerosis treatment as they control reverse cholesterol transport and inflammatory response. This study presents the development and efficacy of nanoparticles (NPs) incorporating the synthetic LXR agonist GW3965 (GW) in targeting atherosclerotic lesions. Collagen IV (Col IV) targeting ligands are employed to functionalize the NPs to improve targeting to the atherosclerotic plaque, and formulation parameters such as the length of the polyethylene glycol (PEG) coating molecules are systematically optimized. In vitro studies indicate that the GW-encapsulated NPs upregulate the LXR target genes and downregulate proinflammatory mediator in macrophages. The Col IV-targeted NPs encapsulating GW (Col IV-GW-NPs) successfully reaches atherosclerotic lesions when administered for 5 weeks to mice with preexisting lesions, substantially reducing macrophage content (≈30%) compared to the PBS group, which is with greater efficacy versus nontargeting NPs encapsulating GW (GW-NPs) (≈18%). In addition, mice administered the Col IV-GW-NPs do not demonstrate increased hepatic lipid biosynthesis or hyperlipidemia during the treatment period, unlike mice injected with the free GW. These findings suggest a new form of LXR-based therapeutics capable of enhanced delivery of the LXR agonist to atherosclerotic lesions without altering hepatic lipid metabolism.


Assuntos
Benzoatos/farmacologia , Benzilaminas/farmacologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Receptores X do Fígado/agonistas , Nanomedicina , Receptores de LDL/genética , Animais , Aterosclerose/tratamento farmacológico , Aterosclerose/metabolismo , Aterosclerose/patologia , Benzoatos/química , Benzoatos/uso terapêutico , Benzilaminas/química , Benzilaminas/uso terapêutico , Células Cultivadas , Colesterol/sangue , Colágeno Tipo IV/química , Colágeno Tipo IV/metabolismo , Modelos Animais de Doenças , Portadores de Fármacos/química , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Nanopartículas/química , Nanopartículas/metabolismo , Polietilenoglicóis/química , Receptores de LDL/deficiência , Triglicerídeos/sangue
10.
Nano Lett ; 14(11): 6449-55, 2014 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-25333768

RESUMO

Protein therapeutics have gained attention recently for treatment of a myriad of human diseases due to their high potency and unique mechanisms of action. We present the development of a novel polymeric thermosponge nanoparticle for efficient delivery of labile proteins using a solvent-free polymer thermo-expansion mechanism with clinical potential, capable of effectively delivering a range of therapeutic proteins in a sustained manner with no loss of bioactivity, with improved biological half-lives and efficacy in vivo.


Assuntos
Anti-Inflamatórios/administração & dosagem , Preparações de Ação Retardada/química , Hipoglicemiantes/administração & dosagem , Insulina/administração & dosagem , Interleucina-10/administração & dosagem , Nanopartículas/química , Polímeros/química , Animais , Anti-Inflamatórios/farmacocinética , Anti-Inflamatórios/farmacologia , Linhagem Celular , Sistemas de Liberação de Medicamentos , Humanos , Hipoglicemiantes/farmacocinética , Hipoglicemiantes/farmacologia , Insulina/farmacocinética , Insulina/farmacologia , Interleucina-10/farmacocinética , Interleucina-10/farmacologia , Camundongos , Nanopartículas/ultraestrutura , Temperatura
12.
Cancer Res ; 74(8): 2144-51, 2014 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-24576829

RESUMO

STAT3 promotes the survival, proliferation, metastasis, immune escape, and drug resistance of cancer cells, making its targeting an appealing prospect. However, although multiple inhibitors of STAT3 and its regulatory or effector pathway elements have been developed, bioactive agents have been somewhat elusive. In this report, we report the identification of a specific STAT3-binding peptide (APTSTAT3) through phage display of a novel "aptide" library. APTSTAT3 bound STAT3 with high specificity and affinity (∼231 nmol/L). Addition of a cell-penetrating motif to the peptide to yield APTSTAT3-9R enabled uptake by murine B16F1 melanoma cells. Treatment of various types of cancer cells with APTSTAT3-9R blocked STAT3 phosphorylation and reduced expression of STAT targets, including cyclin D1, Bcl-xL, and survivin. As a result, APTSTAT3-9R suppressed the viability and proliferation of cancer cells. Furthermore, intratumoral injection of APTSTAT3-9R exerted potent antitumor activity in both xenograft and allograft tumor models. Our results offer a preclinical proof-of-concept for APTSTAT3 as a tractable agent for translation to target the broad array of cancers harboring constitutively activated STAT3.


Assuntos
Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Peptídeos/farmacologia , Fator de Transcrição STAT3/antagonistas & inibidores , Fator de Transcrição STAT3/metabolismo , Animais , Linhagem Celular Tumoral , Sobrevivência Celular , Modelos Animais de Doenças , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Neoplasias/genética , Peptídeos/metabolismo , Fosforilação/efeitos dos fármacos , Ligação Proteica , Transdução de Sinais , Especificidade por Substrato , Ensaios Antitumorais Modelo de Xenoenxerto
13.
J Control Release ; 178: 118-24, 2014 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-24462899

RESUMO

Targeted delivery of anticancer drugs to tumors has attracted considerable research interest because of its potential to reduce adverse toxicity while improving therapeutic efficacy. In this study, we synthesized and evaluated the therapeutic efficacy of a conjugate of a high-affinity peptide (aptide) and the anticancer drug docetaxel (DTX). A fibronectin extra domain B (EDB)-specific aptide (APTEDB) was used as a cancer-specific targeting ligand. An APTEDB-DTX conjugate was synthesized from an alkyne-modified aptide and azide-modified DTX via click chemistry. A microscopy study revealed selective binding of dye-labeled APTEDB to EDB-overexpressing cancer cells. The cytotoxicity of the conjugate toward EDB-overexpressing murine lung carcinoma (LLC) and human glioblastoma (U87MG) was similar to that of free DTX. In a pharmacokinetic study, APTEDB-DTX formulated with PEG400/ethanol(5%) exhibited a circulation half-life similar to that of a Tween-80/ethanol formulation of parent DTX. Finally, an evaluation of intravenously injected APTEDB-DTX in mice bearing EDB-positive tumors showed that APTEDB-DTX inhibited the growth of both LLC allograft and U87MG xenograft tumors with an efficacy better than the parent-DTX formulation but with much lower toxicity, as evidenced by reduced body weight loss. Taken together, these results indicate that the aptide-drug conjugate system described here may hold potential as a targeted therapy regimen.


Assuntos
Antineoplásicos/administração & dosagem , Fibronectinas/química , Neoplasias/tratamento farmacológico , Peptídeos/administração & dosagem , Taxoides/administração & dosagem , Animais , Antineoplásicos/química , Antineoplásicos/farmacocinética , Linhagem Celular Tumoral , Docetaxel , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Nus , Neoplasias/metabolismo , Neoplasias/patologia , Peptídeos/química , Peptídeos/farmacocinética , Estrutura Terciária de Proteína , Taxoides/química , Taxoides/farmacocinética , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
14.
J Control Release ; 170(2): 226-32, 2013 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-23747732

RESUMO

Despite the therapeutic potential of exendin-4 as a glucagon-like peptide-1 (GLP-1) mimetic for the treatment of type 2 diabetes, its utility has so far been limited because of the low level of patient compliance due to the requirement for frequent injections. In this study, an orally available exendin-4 was produced by conjugating it to low molecular weight chitosan (LMWC). Conjugation between the LMWC and cysteinylated exendin-4 was carried out using a cleavable linker system in order to maximize the availability of the active peptide. The LMWC-exendin-4 conjugate formed a nanoparticle structure with a mean particle size of 101 ± 41 nm through complexation between the positively charged LMWC backbone and the negatively charged exendin-4 of individual conjugate molecules. The biological activity of the LMWC-exendin-4 conjugate was evaluated in an INS-1 cell line. The LMWC-exendin-4 conjugate stimulated insulin secretion in a dose dependent manner as similar as that of native exendin-4. From the pharmacokinetic study after oral administration of the conjugate, a C(max) value of 344 pg/mL and a T(max) of 6 h were observed, and the bioavailability, relative to the subcutaneous counterpart, was found to be 6.4%. Furthermore, the absorbed exendin-4 demonstrated a significantly enhanced hypoglycemic effect. These results suggest that the LMWC-exendin-4 conjugate could be used as a potential oral anti-diabetic agent for the treatment of type 2 diabetes.


Assuntos
Quitosana/administração & dosagem , Diabetes Mellitus/tratamento farmacológico , Hipoglicemiantes/administração & dosagem , Peptídeos/administração & dosagem , Peçonhas/administração & dosagem , Administração Oral , Animais , Linhagem Celular Tumoral , Quitosana/química , Quitosana/farmacocinética , Diabetes Mellitus/metabolismo , Exenatida , Hipoglicemiantes/química , Hipoglicemiantes/farmacocinética , Insulina/metabolismo , Secreção de Insulina , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Peso Molecular , Peptídeos/química , Peptídeos/farmacocinética , Ratos , Peçonhas/química , Peçonhas/farmacocinética
15.
J Mater Chem B ; 1(37): 4723-4726, 2013 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-32261155

RESUMO

Aptides, developed by our laboratory, are a novel class of high-affinity peptides. Here, we describe the conjugation of an aptide targeting extra-domain B (EDB) of tumor-associated fibronectin to drug-containing liposomes and explore the potential of these aptide-conjugated liposomes as a robust and efficient targeted drug-delivery system for glioma therapy.

16.
J Mater Chem B ; 1(36): 4576-4583, 2013 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-32261200

RESUMO

Here, we report a nanotheranostic system that enables simultaneous imaging and therapy of HER2-overexpressing tumors. We first screened an aptide-based phage library for HER2-specific peptide ligands, identifying a HER2-specific aptide (APTHER2) phage clone. Chemically synthesized APTHER2 showed high affinity for its target protein (Kd≈ 89 nM) and specifically bound HER2-overexpressing cells (NIH3T6.7) and tumor tissue slices. Next, we prepared HER2-specific-aptide-conjugated magneto-nanoclusters (APTHER2-MNCs) by a rehydration method using oleic acid-stabilized superparamagnetic iron oxide nanoparticles (SPIONs) and amphiphilic phospholipids, yielding nanoparticles with a hydrodynamic diameter of 47 ± 10 nm. The APTHER2-MNCs showed higher transverse (r2) relaxivity (∼180 mM-1 s-1) and greater drug-loading capacity compared to the equivalent isolated SPIONs (∼120 mM-1 s-1). When intravenously injected into HER2-overexpressing NIH3T6.7 tumor-bearing mice, APTHER2-MNCs substantially accumulated in tumor tissue, enhancing the relative signal by ∼45% at 3 h post-injection. This allowed us to detect the tumor using magnetic resonance imaging. Furthermore, after docetaxel loading, the drug-loaded APTHER2-MNCs remarkably inhibited the growth of HER2-overexpressing tumors (∼50% relative to controls) with little apparent toxicity, measured as changes in body weight. Together, these results indicate that APTHER2-MNCs show promise as an efficient nanotheranostic system that enables specific cancer imaging as well as targeted therapy.

17.
J Control Release ; 163(2): 111-8, 2012 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-22964395

RESUMO

Fibronectin extra domain B (EDB) is specifically expressed in cancer-associated blood vessels and extracellular matrix, and thus is a promising cancer biomarker. Very recently, we developed a novel class of high-affinity (<100nM) peptides, termed 'aptides', that specifically bind a variety of protein targets. Here, we describe superparamagnetic iron oxide nanoparticles (SPIONs) conjugated with EDB-specific aptides for use in targeted magnetic resonance imaging (MRI) of cancer. An anti-EDB aptide (APT(EDB)) containing an additional cysteine residue reacted with maleimide-terminated, PEGylated phospholipid (Mal-PEG(2000)-DSPE) to give an aptide-conjugated PEGylated phospholipid (APT(EDB)-PEG(2000)-DSPE). A nanoemulsion method was then used to coat oleic acid-stabilized SPIONs with amphiphilic phospholipids, including APT(EDB)-PEG(2000)-DSPE, methoxy-PEG(2000)-DSPE, and rhodamine-DMPE. The resulting nanoparticles (APT(EDB)-SPIONs) had a hydrodynamic size of less than 50 nm and remained stable in an aqueous solution for at least 1week. In in vitro studies, APT(EDB)-SPIONs showed specific uptake by EDB-overexpressing cell lines. In an in vivo Lewis lung carcinoma model that expresses a high level of the target EDB protein, MRI clearly revealed that APT(EDB)-SPIONs injected via the tail vein specifically accumulated at the tumor site. Non-targeting SPIONs lacking the anti-EDB aptide showed much lower uptake in tumor tissues than did aptide-conjugated nanoparticles. Further, we confirmed that the distribution of nanoparticles within the tumor tissue was well correlated with the areas where EDB was expressed. Our APT(EDB)-SPIONs hold high potential as a specific imaging modality for the detection of EDB-overexpressing tumors.


Assuntos
Carcinoma Pulmonar de Lewis/metabolismo , Sistemas de Liberação de Medicamentos , Fibronectinas , Nanopartículas , Animais , Carcinoma Pulmonar de Lewis/diagnóstico , Feminino , Compostos Férricos/química , Fibronectinas/química , Imageamento por Ressonância Magnética , Camundongos , Camundongos Endogâmicos BALB C , Nanopartículas/química , Peptídeos/química
20.
Small ; 7(15): 2241-9, 2011 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-21648076

RESUMO

CG-rich duplex containing prostate-specific membrane antigen (PSMA) aptamer-conjugated thermally cross-linked superparamagnetic iron oxide nanoparticles (TCL-SPIONs) is reported as prostate cancer-specific nanotheranostic agents. These agents are capable of prostate tumor detection in vivo by magnetic resonance imaging (MRI) and selective delivery of drugs to the tumor tissue, simultaneously. The prepared PSMA-functionalized TCL-SPION via a hybridization method (Apt-hybr-TCL-SPION) exhibited preferential binding towards target prostate-cancer cells (LNCaP, PSMA+) in both in vitro and in vivo when analyzed by T(2) -weighted MRI. After Dox molecules were loaded onto the Apt-hybr-TCL-SPION through the intercalation of Dox to the CG-rich duplex containing PSMA aptamer as well as electrostatic interaction between the Dox-and-polymer coating layer of the nanoparticles, the resulting Dox@Apt-hybr-TCL-SPION showed selective drug-delivery efficacy in the LNCaP xenograft mouse model. These results suggest that Dox@Apt-hybr-TCL-SPION has potential for use as novel prostate cancer-specific nanotheranostics.


Assuntos
Aptâmeros de Nucleotídeos/química , Compostos Férricos/química , Nanopartículas de Magnetita/química , Neoplasias da Próstata/tratamento farmacológico , Animais , Antibióticos Antineoplásicos/administração & dosagem , Antibióticos Antineoplásicos/uso terapêutico , Doxorrubicina/administração & dosagem , Doxorrubicina/uso terapêutico , Imageamento por Ressonância Magnética , Masculino , Nanomedicina/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...