Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Res ; 235: 116669, 2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37453506

RESUMO

The global demand for masks has increased significantly owing to COVID-19 and mutated viruses, resulting in a massive amount of mask waste of approximately 490,000 tons per month. Mask waste recycling is challenging because of the composition of multicomponent polymers and iron, which puts them at risk of viral infection. Conventional treatment methods also cause environmental pollution. Gasification is an effective method for processing multicomponent plastics and obtaining syngas for various applications. This study investigated the carbon dioxide gasification and tar removal characteristics of an activated carbon bed using a 1-kg/h laboratory-scale bubble fluidized bed gasifier. The syngas composition was analyzed as 10.52 vol% of hydrogen, 6.18 vol% of carbon monoxide, 12.05 vol% of methane, and 14.44 vol% of hydrocarbons (C2-C3). The results of carbon dioxide gasification with activated carbon showed a tar-reduction efficiency of 49%, carbon conversion efficiency of 45.16%, and cold gas efficiency of 88.92%. This study provides basic data on mask waste carbon dioxide gasification using greenhouse gases as useful product gases.


Assuntos
COVID-19 , Dióxido de Carbono , Humanos , Carvão Vegetal , Máscaras , COVID-19/prevenção & controle , Gases , Biomassa
2.
Fuel (Lond) ; 331: 125720, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36033729

RESUMO

Globally, the demand for masks has increased due to the COVID-19 pandemic, resulting in 490,201 tons of waste masks disposed of per month. Since masks are used in places with a high risk of virus infection, waste masks retain the risk of virus contamination. In this study, a 1 kg/h lab-scale (diameter: 0.114 m, height: 1 m) bubbling fluidized bed gasifier was used for steam gasification (temperature: 800 °C, steam/carbon (S/C) ratio: 1.5) of waste masks. The use of a downstream reactor with activated carbon (AC) for tar cracking and the enhancement of hydrogen production was examined. Steam gasification with AC produces syngas with H2, CO, CH4, and CO2 content of 38.89, 6.40, 21.69, and 7.34 vol%, respectively. The lower heating value of the product gas was 29.66 MJ/Nm3 and the cold gas efficiency was 74.55 %. This study showed that steam gasification can be used for the utilization of waste masks and the production of hydrogen-rich gas for further applications.

3.
Asian-Australas J Anim Sci ; 30(8): 1074-1080, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28335095

RESUMO

OBJECTIVE: The growth, carcass and retail cut yield records on 1,428 Hanwoo steers obtained through progeny testing were analyzed in this study, and their heritability and genetic relationships among the traits were estimated using animal models. METHODS: Two different models were compared in this study. Each model was fitted for different fixed class effects, date of slaughter for carcass traits and batch of progeny test live measurement traits, and a choice of covariates (carcass weight in Model 1 or backfat thickness in Model 2) for carcass traits. RESULTS: The differences in body composition among individuals were deemed being unaffected by their age at slaughter, except for carcass weight and backfat thickness. Heritability estimates of body size measurements were 0.21 to 0.36. Heritability estimates of retail cut percentage were high (0.56 from Model 1 and 0.47 from Model 2). And the heritability estimates for loin muscle percentage were 0.36 from Model 1 and 0.42 from Model 2, which were high enough to consider direct selection on carcass cutability traits as effective. The genetic correlations between body size measurements and retail cut ratio (RCR) were close to zero. But, some negative genetic correlations were found with chest girths measured at yearling (Model 1) or at 24 months of age or with chest widths. Loin muscle ratio (LMR) was genetically negatively correlated with body weights or body size measurements, in general in Model 1. These relationships were low close to zero but positive in Model 2. Phenotypic correlation between cutability traits (RCR, LMR) and live body size measurements were moderate and negative in Model 1 while those in Model 2 were all close to zero. CONCLUSION: Therefore, the body weights or linear body measurements at an earlier age may not be the most desirable selection traits for exploitation of correlated responses to improve loin muscle or lean meat yield.

4.
Nano Lett ; 16(11): 7261-7269, 2016 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-27775893

RESUMO

Nanostructured silicon (Si) is useful in many applications and has typically been synthesized by bottom-up colloid-based solution processes or top-down gas phase reactions at high temperatures. These methods, however, suffer from toxic precursors, low yields, and impractical processing conditions (i.e., high pressure). The magnesiothermic reduction of silicon oxide (SiO2) has also been introduced as an alternative method. Here, we demonstrate the reduction of SiO2 by a simple milling process using a lab-scale planetary-ball mill and industry-scale attrition-mill. Moreover, an ignition point where the reduction begins was consistently observed for the milling processes, which could be used to accurately monitor and control the reaction. The complete conversion of rice husk SiO2 to high purity Si was demonstrated, taking advantage of the rice husk's uniform nanoporosity and global availability, using a 5L-scale attrition-mill. The resulting porous Si showed excellent performance as a Li-ion battery anode, retaining 82.8% of the initial capacity of 1466 mAh g-1 after 200 cycles.

5.
Nano Lett ; 16(1): 282-8, 2016 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-26694703

RESUMO

Despite the recent considerable progress, the reversibility and cycle life of silicon anodes in lithium-ion batteries are yet to be improved further to meet the commercial standards. The current major industry, instead, adopts silicon monoxide (SiOx, x ≈ 1), as this phase can accommodate the volume change of embedded Si nanodomains via the silicon oxide matrix. However, the poor Coulombic efficiencies (CEs) in the early period of cycling limit the content of SiOx, usually below 10 wt % in a composite electrode with graphite. Here, we introduce a scalable but delicate prelithiation scheme based on electrical shorting with lithium metal foil. The accurate shorting time and voltage monitoring allow a fine-tuning on the degree of prelithiation without lithium plating, to a level that the CEs in the first three cycles reach 94.9%, 95.7%, and 97.2%. The excellent reversibility enables robust full-cell operations in pairing with an emerging nickel-rich layered cathode, Li[Ni0.8Co0.15Al0.05]O2, even at a commercial level of initial areal capacity of 2.4 mAh cm(-2), leading to a full cell energy density 1.5-times as high as that of graphite-LiCoO2 counterpart in terms of the active material weight.

6.
Bioresour Technol ; 155: 442-5, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24472746

RESUMO

To investigate the kinetic characteristics of coking coal mixed with biomass during pyrolysis, thermogravimetric (TG) and thermo-balance reactor (TBR) analyses were conducted under non-isothermal and isothermal condition. Yellow poplar as a biomass (B) was mixed with weak coking coal (WC) and hard coking coal (HC), respectively. The calculated activation energies of WC/B blends were higher than those of HC/B blends under non-isothermal and isothermal conditions. The coal/biomass blends show increased reactivity and decreased activation energy with increasing biomass blend ratio, regardless of the coking properties of the coal. The different char structures of the WC/B and HC/B blends were analyzed by BET and SEM.


Assuntos
Biocombustíveis , Carvão Mineral/análise , Coque/análise , Temperatura Alta , Liriodendron/química , Biomassa , Cinética , Microscopia Eletrônica de Varredura , Porosidade , Termogravimetria
7.
Bioresour Technol ; 101(15): 6151-6, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20299208

RESUMO

Co-pyrolysis characteristics of sawdust and coal blend were determined in TGA and a fixed bed reactor. The yield and conversion of co-pyrolysis of sawdust and coal blend based on volatile matters are higher than those of the sum of sawdust and coal individually. Form TGA experiments, weight loss rate of sawdust and coal blend increases above 400 degrees C and additional weight loss was observed at 700 degrees C. In a fixed bed at isothermal condition, the synergy to produce more volatiles is appeared at 500-700 degrees C, and the maximum synergy exhibits with a sawdust blending ratio of 0.6 at 600 degrees C. The gas product yields remarkably increase at lower temperature range by reducing tar yield. The CO yield increases up to 26% at 400 degrees C and CH(4) yield increases up to 62% at 600 degrees C compared with the calculated value from the additive model.


Assuntos
Reatores Biológicos , Carvão Mineral , Larix/química , Madeira/química , Transferência de Energia , Temperatura Alta , Termogravimetria
8.
Bioresour Technol ; 101(4): 1227-32, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19819133

RESUMO

In the present study, gasification of biodiesel by-product, crude glycerin, was performed in an entrained flow gasifier. Gasification was conducted in a temperature range of 950-1500 degrees C and excess air ratio of 0.17-0.7 for air or oxygen as a gasification agent. From the results, syngas heating value, carbon conversion and cold gas efficiency of more than 2500 kcal/Nm(3), 92% and 65% were achieved, respectively. The H(2)/CO ratio of the product gas was varied from 1.25 to 0.7 with the excess air ratio and this gas composition was favorable for DME synthesis. The optimum excess air ratio for gasification of biodiesel by-product was evaluated to be an approximately 0.35-0.4. The present results indicate that crude glycerin can be utilized as a feedstock for gasification to make syngas.


Assuntos
Ar , Biocombustíveis , Gases/síntese química , Oxigênio/química , Monóxido de Carbono/química , Gases/química , Glicerol/química , Hidrogênio/química , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...