Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(3)2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38339704

RESUMO

This paper introduces an approach to the automated measurement and analysis of dairy cows using 3D point cloud technology. The integration of advanced sensing techniques enables the collection of non-intrusive, precise data, facilitating comprehensive monitoring of key parameters related to the health, well-being, and productivity of dairy cows. The proposed system employs 3D imaging sensors to capture detailed information about various parts of dairy cows, generating accurate, high-resolution point clouds. A robust automated algorithm has been developed to process these point clouds and extract relevant metrics such as dairy cow stature height, rump width, rump angle, and front teat length. Based on the measured data combined with expert assessments of dairy cows, the quality indices of dairy cows are automatically evaluated and extracted. By leveraging this technology, dairy farmers can gain real-time insights into the health status of individual cows and the overall herd. Additionally, the automated analysis facilitates efficient management practices and optimizes feeding strategies and resource allocation. The results of field trials and validation studies demonstrate the effectiveness and reliability of the automated 3D point cloud approach in dairy farm environments. The errors between manually measured values of dairy cow height, rump angle, and front teat length, and those calculated by the auto-measurement algorithm were within 0.7 cm, with no observed exceedance of errors in comparison to manual measurements. This research contributes to the burgeoning field of precision livestock farming, offering a technological solution that not only enhances productivity but also aligns with contemporary standards for sustainable and ethical animal husbandry practices.


Assuntos
Computação em Nuvem , Aprendizado Profundo , Feminino , Bovinos , Animais , Reprodutibilidade dos Testes , Indústria de Laticínios/métodos , Tecnologia
2.
Sensors (Basel) ; 24(2)2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38257521

RESUMO

The rapid evolution of 3D technology in recent years has brought about significant change in the field of agriculture, including precision livestock management. From 3D geometry information, the weight and characteristics of body parts of Korean cattle can be analyzed to improve cow growth. In this paper, a system of cameras is built to synchronously capture 3D data and then reconstruct a 3D mesh representation. In general, to reconstruct non-rigid objects, a system of cameras is synchronized and calibrated, and then the data of each camera are transformed to global coordinates. However, when reconstructing cattle in a real environment, difficulties including fences and the vibration of cameras can lead to the failure of the process of reconstruction. A new scheme is proposed that automatically removes environmental fences and noise. An optimization method is proposed that interweaves camera pose updates, and the distances between the camera pose and the initial camera position are added as part of the objective function. The difference between the camera's point clouds to the mesh output is reduced from 7.5 mm to 5.5 mm. The experimental results showed that our scheme can automatically generate a high-quality mesh in a real environment. This scheme provides data that can be used for other research on Korean cattle.

3.
Asian-Australas J Anim Sci ; 30(9): 1225-1233, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28423868

RESUMO

OBJECTIVE: Calving ease (CE) is a complex reproductive trait of economic importance in dairy cattle. This study was aimed to investigate the genetic merits of CE for Holsteins in Korea. METHODS: A total of 297,614 field records of CE, from 2000 to 2015, from first parity Holstein heifers were recorded initially. After necessary data pruning such as age at first calving (18 to 42 mo), gestation length, and presence of sire information, final datasets for CE consisted of 147,526 and 132,080 records for service sire calving ease (SCE) and daughter calving ease (DCE) evaluations, respectively. The CE categories were ordered and scores ranged from CE1 to CE5 (CE1, easy; CE2, slight assistance; CE3, moderate assistance; CE4, difficult calving; CE5, extreme difficulty calving). A linear transformation of CE score was obtained on each category using Snell procedure, and a scaling factor was applied to attain the spread between 0 (CE5) and 100% (CE1). A sire-maternal grandsire model analysis was performed using ASREML 3.0 software package. RESULTS: The estimated direct heritability (h2) from SCE and DCE evaluations were 0.11±0.01 and 0.08±0.01, respectively. Maternal h2 estimates were 0.05±0.02 and 0.04±0.01 from SCE and DCE approaches, respectively. Estimates of genetic correlations between direct and maternal genetic components were -0.68±0.09 (SCE) and -0.71±0.09 (DCE). The average direct genetic effect increased over time, whereas average maternal effect was low and consistent. The estimated direct predicted transmitting ability (PTA) was desirable and increasing over time, but the maternal PTA was undesirable and decreasing. CONCLUSION: The evidence on sufficient genetic variances in this study could reflect a possible selection improvement over time regarding ease of calving. It is expected that the estimated genetic parameters could be a valuable resource to formulate sire selection and breeding plans which would be directed towards the reduction of calving difficulty in Korean Holsteins.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA