Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 483
Filtrar
1.
Mar Pollut Bull ; 207: 116858, 2024 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-39159571

RESUMO

Marine organisms' lipid metabolism contributes to marine ecosystems by producing a variety of lipid molecules. Historically, research focused on the lipid metabolism of the organisms themselves. Recent microbiome studies, however, have revealed that gut microbial communities influence the amount and type of lipids absorbed by organisms, thereby altering the organism's lipid metabolism. This has highlighted the growing importance of research on gut microbiota. This review highlights mechanisms by which gut microbiota facilitate lipid digestion and diversify the lipid pool in aquatic animals through the accelerated degradation of exogenous lipids and the transformation of lipid molecules. We also assess how environmental factors and pollutants, along with the innovative use of probiotics, interact with the gut microbiome to influence lipid metabolism within the host. We aim to elucidate the complex interactions between lipid metabolism and gut microbiota in aquatic animals by synthesizing current research and identifying knowledge gaps, providing a foundation for future explorations.

2.
Small ; : e2404283, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39016994

RESUMO

Efficient sodium ion storage in graphite is as yet unattainable, because of the thermodynamic instability of sodium ion intercalates-graphite compounds. In this work, sodium fluorozirconate (Na3ZrF7, SFZ) functionalized graphite (SFZ-G) is designed and prepared by the in situ mechanochemical silicon (Si) replacement of sodium fluorosilicate (Na2SiF6, SFS) and functionalization of graphite at the same time. During the mechanochemical process, the atomic Si in SFS is directly replaced by atomic zirconium (Zr) from the zirconium oxide (ZrO2) balls and container in the presence of graphite, forming SFZ-G. The resulting SFZ-G, working as an anode material for sodium ion storage, shows a significantly enhanced capacity of 418.7 mAh g-1 at 0.1 C-rate, compared to pristine graphite (35 mAh g-1) and simply ball-milled graphite (BM-G, 200 mAh g-1). In addition, the SFZ-G exhibits stable sodium-ion storage performance with 86% of its initial capacity retention after 1000 cycles at 2.0 C-rate.

3.
Biotechnol Bioeng ; 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38978356

RESUMO

Traditional Chinese hamster ovary (CHO) cell line development is based on random integration (RI) of transgene that causes clonal variation and subsequent large-scale clone screening. Therefore, site-specific integration (SSI) of transgenes into genomic hot spots has recently emerged as an alternative method for cell line development. However, the specific mechanisms underlying hot spot site formation remain unclear. In this study, we aimed to generate landing pad (LP) cell lines via the RI of transgenes encoding fluorescent reporter proteins flanked by recombination sites to facilitate recombinase-mediated cassette exchange. The RI-based LP cell line expressing high reporter levels with spontaneous C12orf35 locus deletion exhibited similar reporter fluorescent protein levels compared to targeted integrants with an identical reporter LP construct at the CHO genome hot spot, the C12orf35 locus. Additionally, Resf1, a C12orf35 locus gene, knockout (KO) in the RI-based LP cell line with conserved C12orf35 increased reporter expression levels, comparable to those in cell lines with C12orf35 locus disruption. These results indicate that the effect of SSI into the C12orf35 locus, a genomic hot spot, on high-level transgene expression was caused by C12orf35 disruption. In contrast to C12orf35 KO, KO at other well-known hot spot sites at specific loci of genes, including Fer1L4, Hprt1, Adgrl4, Clcc1, Dop1b, and Ddc, did not increase transgene expression. Overall, our findings suggest that C12orf35 is a promising engineering target and a hot spot for SSI-based cell line development.

4.
BMC Vet Res ; 20(1): 294, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38970005

RESUMO

Since its identification in the vitreous humour of the eye and laboratory biosynthesis, hyaluronic acid (HA) has been a vital component in several pharmaceutical, nutritional, medicinal, and cosmetic uses. However, little is known about its potential toxicological impacts on aquatic inhabitants. Herein, we investigated the hematological response of Clarias gariepinus to nominal doses of HA. To achieve this objective, 72 adult fish were randomly and evenly distributed into four groups: control, low-dose (0.5 mg/l HA), medium-dose (10 mg/l HA), and high-dose (100 mg/l HA) groups for two weeks each during both the exposure and recovery periods. The findings confirmed presence of anemia, neutrophilia, leucopoenia, lymphopenia, and eosinophilia at the end of exposure to HA. In addition, poikilocytosis and a variety of cytomorphological disturbances were observed. Dose-dependent histological alterations in spleen morphology were observed in the exposed groups. After HA removal from the aquarium for 2 weeks, the groups exposed to the two highest doses still exhibited a notable decline in red blood cell count, hemoglobin concentration, mean corpuscular hemoglobin concentration, and an increase in mean corpuscular volume. Additionally, there was a significant rise in neutrophils, eosinophils, cell alterations, and nuclear abnormalities percentages, along with a decrease in monocytes, coupled with a dose-dependent decrease in lymphocytes. Furthermore, only the highest dose of HA in the recovered groups continued to cause a significant increase in white blood cells. White blood cells remained lower, and the proportion of apoptotic RBCs remained higher in the high-dose group. The persistence of most of the haematological and histological disorders even after recovery period indicates a failure of physiological compensatory mechanisms to overcome the HA-associated problems or insufficient duration of recovery. Thus, these findings encourage the inclusion of this new hazardous agent in the biomonitoring program and provide a specific pattern of hematological profile in HA-challenged fish. Further experiments are highly warranted to explore other toxicological hazards of HA using dose/time window protocols.


Assuntos
Peixes-Gato , Ácido Hialurônico , Baço , Animais , Ácido Hialurônico/sangue , Baço/efeitos dos fármacos , Baço/patologia , Relação Dose-Resposta a Droga
5.
Mar Pollut Bull ; 206: 116681, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38991605

RESUMO

To elucidate the spatial-temporal impact of invasive saltmarsh plant Spartina anglica on the biogeochemical processes in coastal wetlands, we investigated the rates and partitioning of organic carbon (Corg) mineralization in three representative benthic habitats: (1) vegetated sediments inhabited by invasive S. anglica (SA); vegetated sediments by indigenous Suaeda japonica; and (3) unvegetated mud flats. Microbial metabolic rates were greatly stimulated at the SA site during the active growing seasons of Spartina, indicating that a substantial amount of organic substrates was supplied from the high below-ground biomass of Spartina. At the SA site, sulfate reduction dominated the Corg mineralization pathways during the plant growing season, whereas iron reduction dominated during the non-growing season. Overall, due to its greater biomass and longer growing season than native Suaeda, the expansion of invasive Spartina is likely to greatly alter the Corg-Fe-S cycles and carbon storage capacity in the coastal wetlands.


Assuntos
Carbono , Estuários , Espécies Introduzidas , Áreas Alagadas , Poaceae , Ferro , Sedimentos Geológicos/química , Monitoramento Ambiental , Rios/química , China , Biomassa , Ciclo do Carbono , Estações do Ano
6.
Mar Pollut Bull ; 205: 116553, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38880034

RESUMO

This study reports the effects of bisphenol A (BPA) on the rotifer Brachionus plicatilis, focusing on growth performance, reproductive output, oxidative stress responses, and lipid metabolism genes. High BPA levels disrupted peak daily offspring production and led to oxidative stress and increased superoxide dismutase and catalase activity. The research identified distinctive monoacylglycerol O-acyltransferase (MGAT) and diacylglycerol O-acyltransferase (DGAT) genes in B. plicatilis, B. rotundiformis, and B. koreanus, enhancing understanding of lipid metabolism in these species. BPA exposure significantly altered MGAT and DGAT expression, and feeding status affected these regulatory patterns. When food was unavailable, BPA reduced DGAT2 and MGAT2a expression. However, under feeding conditions, DGAT2 and MGAT1 levels increased, indicating that nutritional status and BPA exposure interact to affect gene expression.


Assuntos
Compostos Benzidrílicos , Metabolismo dos Lipídeos , Estresse Oxidativo , Fenóis , Reprodução , Rotíferos , Poluentes Químicos da Água , Animais , Compostos Benzidrílicos/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Fenóis/toxicidade , Reprodução/efeitos dos fármacos , Metabolismo dos Lipídeos/efeitos dos fármacos , Rotíferos/efeitos dos fármacos , Rotíferos/fisiologia , Poluentes Químicos da Água/toxicidade , Diacilglicerol O-Aciltransferase/genética , Diacilglicerol O-Aciltransferase/metabolismo
7.
Mar Pollut Bull ; 205: 116552, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38908192

RESUMO

To study multigenerational resilience to high temperature (HT) conditions, we exposed Brachionus plicatilis marine rotifers to HT, high salinity (HS), and nanoplastics (NPs), and measured reproductive and life-cycle endpoints. After exposure to HT, rotifer lifespans were reduced, but daily production of offspring increased. However, both combined HT/HS and HT/HS/NP exposure led to additional decreases in longevity and reproductive ability; the antioxidant defense mechanisms of the rotifers were also notably upregulated as measured by reactive oxygen species levels. Fatty-acid profiles were reduced in all conditions. In multigenerational experiments, the negative effects of HT dissipated rapidly; however, the effects of HT/HS and HT/HS/NPs required four generations to disappear completely. The findings indicated that B. plicatilis were able to recover from these environmental stressors. This study demonstrated the resilience of aquatic organisms in response to changing environmental conditions and provides insights into the complex interactions of different abiotic stressors.


Assuntos
Rotíferos , Salinidade , Poluentes Químicos da Água , Animais , Rotíferos/fisiologia , Poluentes Químicos da Água/toxicidade , Temperatura Alta , Reprodução/efeitos dos fármacos , Estresse Fisiológico , Microplásticos/toxicidade
8.
Mar Pollut Bull ; 205: 116633, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38936003

RESUMO

In this study, we investigated the acute toxicity, in vivo effects, oxidative stress, and gene expression changes caused by hypoxia on the brackish water flea Diaphanosoma celebensis. The no-observed-effect concentration (NOEC) of 48 h of hypoxia exposure was found to be 2 mg/L O2. Chronic exposure to NOEC caused a significant decline in lifespan but had no effect on total fecundity. The induction of reactive oxygen species increased in a time-dependent manner over 48 h, whereas the content of antioxidant enzymes (superoxide dismutase and catalase) decreased. The transcription and translation levels were modulated by hypoxia exposure. In particular, a significant increase in hemoglobin level was followed by up-regulation of hypoxia-inducible factor 1α gene expression and activation of the mitogen-activated protein kinase pathway. In conclusion, our findings provide a better understanding of the molecular mechanism of the adverse effects of hypoxia in brackish water zooplankton.


Assuntos
Estresse Oxidativo , Espécies Reativas de Oxigênio , Animais , Espécies Reativas de Oxigênio/metabolismo , Cladocera/efeitos dos fármacos , Cladocera/fisiologia , Hipóxia , Superóxido Dismutase/metabolismo , Catalase/metabolismo , Oxigênio/metabolismo , Águas Salinas
9.
Sci Total Environ ; 944: 173747, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-38838999

RESUMO

The escalating production and improper disposal of petrochemical-based plastics have led to a global pollution issue with microplastics (MPs), which pose a significant ecological threat. Biobased and biodegradable plastics are believed to mitigate plastic pollution. However, their environmental fate and toxicity remain poorly understood. This study compares the in vivo effects of different types of MPs, poly(butylene adipate-co-terephthalate) as a biodegradable plastic, polylactic acid (PLA) as a biobased plastic, ß-cyclodextrin-grafted PLA as a modified biobased plastic, and low density polyethylene as the reference petrochemical-based plastic, on the key aquatic primary consumer Diaphanosoma celebensis. Exposure to MPs resulted in significant reproductive decline, with comparable effects observed irrespective of MP type or concentration. Exposure to MPs induced distinct responses in redox stress, with transcriptional profiling revealing differential gene expression patterns that indicate varied cellular responses to different types of MPs. ATP-binding cassette transporter activity assays demonstrated altered efflux activity, mainly in response to modified biobased and biodegradable MPs. Overall, this study highlights the comparable in vivo and in vitro effects of biobased, biodegradable, and petrochemical-based MPs on aquatic primary consumers, highlighting their potential ecological implications.


Assuntos
Microplásticos , Poluentes Químicos da Água , Microplásticos/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Plásticos Biodegradáveis , Cladocera/efeitos dos fármacos , Poliésteres
10.
Sci Total Environ ; 943: 173574, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38823721

RESUMO

Mercury is a hazardous heavy metal that is distributed worldwide in aquatic ecosystems. Methylmercury (MeHg) poses significant toxicity risks to aquatic organisms, primarily through bioaccumulation and biomagnification, due to its strong affinity for protein thiol groups, which results in negative effects even at low concentrations. MeHg exposure can cause various physiological changes, oxidative stress, neurotoxicity, metabolic disorders, genetic damage, and immunotoxicity. To assess the risks of MeHg contamination in actual aquatic ecosystems, it is important to understand how MeHg interacts with environmental factors such as temperature, pH, dissolved organic matter, salinity, and other pollutants such as microplastics and organic compounds. Complex environmental conditions can cause potential toxicity, such as synergistic, antagonistic, and unchanged effects, of MeHg in aquatic organisms. This review focuses on demonstrating the toxic effects of single MeHg exposure and the interactive relationships between MeHg and surrounding environmental factors or pollutants on aquatic organisms. Our review also recommends further research on biological and molecular responses in aquatic organisms to better understand the potential toxicity of combinational exposure.


Assuntos
Organismos Aquáticos , Compostos de Metilmercúrio , Poluentes Químicos da Água , Compostos de Metilmercúrio/toxicidade , Organismos Aquáticos/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Animais , Monitoramento Ambiental
11.
J Hazard Mater ; 473: 134641, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38788572

RESUMO

Here, we investigate the effects of acute and chronic exposure to arsenate (AsV) and arsenite (AsIII) in the marine medaka Oryzias melastigma. In vivo effects, biotransformation, and oxidative stress were studied in marine medaka exposed to the two inorganic arsenics for 4 or 28 days. An investigation of embryonic development revealed no effect on in vivo parameters, but the hatching rate increased in the group exposed to AsIII. Exposure to AsIII also caused the greatest accumulation of arsenic in medaka. For acute exposure, the ratio of AsV to AsIII was higher than that of chronic exposure, indicating that bioaccumulation of inorganic arsenic can induce oxidative stress. The largest increase in oxidative stress was observed following acute exposure to AsIII, but no significant degree of oxidative stress was induced by chronic exposure. During acute exposure to AsV, the increase in the enzymatic activity of glutathione-S-transferase (GST) was twice as high compared with exposure to AsIII, suggesting that GST plays an important role in the initial detoxification process. In addition, an RNA-seq-based ingenuity pathway analysis revealed that acute exposure to AsIII may be related to cell-cycle progression. A network analysis using differentially expressed genes also revealed a potential link between the generation of inflammatory cytokines and oxidative stress due to arsenic exposure.


Assuntos
Arseniatos , Glutationa Transferase , Oryzias , Estresse Oxidativo , Poluentes Químicos da Água , Animais , Oryzias/metabolismo , Oryzias/genética , Estresse Oxidativo/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Arseniatos/toxicidade , Glutationa Transferase/metabolismo , Glutationa Transferase/genética , Arsenitos/toxicidade , Embrião não Mamífero/efeitos dos fármacos , Embrião não Mamífero/metabolismo
12.
Environ Sci Technol ; 58(23): 10041-10051, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38788731

RESUMO

Ordering takeout is a growing social phenomenon and may raise public health concerns. However, the associated health risk of compounds leaching from plastic packaging is unknown due to the lack of chemical and toxicity data. In this study, 20 chemical candidates were tentatively identified in the environmentally relevant leachate from plastic containers through the nontargeted chemical analysis. Three main components with high responses and/or predicted toxicity were further verified and quantified, namely, 3,5-di-tert-butyl-4-hydroxycinnamic acid (BHC), 2,4-di-tert-butylphenol (2,4-DTBP), and 9-octadecenamide (oleamide). The toxicity to zebrafish larvae of BHC, a degradation product of a widely used antioxidant Irganox 1010, was quite similar to that of the whole plastic leachate. In the same manner, RNA-seq-based ingenuity analysis showed that the affected canonical pathways of zebrafish larvae were quite comparable between BHC and the whole plastic leachate, i.e., highly relevant to neurological disease, metabolic disease, and even behavioral disorder. Longer-term exposure (35 days) did not cause any effect on adult zebrafish but led to decreased hatching rate and obvious neurotoxicity in zebrafish offspring. Collectively, this study strongly suggests that plastic containers can leach out a suite of compounds causing non-negligible impacts on the early stages of fish via direct or parental exposure.


Assuntos
Plásticos , Poluentes Químicos da Água , Peixe-Zebra , Animais , Poluentes Químicos da Água/toxicidade , Larva/efeitos dos fármacos
13.
Environ Sci Technol ; 58(17): 7577-7587, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38630542

RESUMO

The serotonin signaling system plays a crucial role in regulating the ontogeny of crustaceans. Here, we describe the effects of different concentrations of the 5-hydroxytryptamine 1A receptor antagonist (WAY-100635) on the induced antipredation (Rhodeus ocellatus as the predator), morphological, behavioral, and life-history defenses of Daphnia magna and use transcriptomics to analyze the underlying molecular mechanisms. Our results indicate that exposure to WAY-100635 leads to changes in the expression of different defensive traits in D. magna when faced with fish predation risks. Specifically, as the length of exposure to WAY-100635 increases, high concentrations of WAY-100635 inhibit defensive responses associated with morphological and reproductive activities but promote the immediate negative phototactic behavioral defense of D. magna. This change is related to the underlying mechanism through which WAY-100635 interferes with gene expression of G-protein-coupled GABA receptors by affecting GABBR1 but promotes serotonin receptor signaling and ecdysteroid signaling pathways. In addition, we also find for the first time that fish kairomone can significantly activate the HIF-1α signaling pathway, which may lead to an increase in the rate of immediate movement. These results can help assess the potential impacts of serotonin-disrupting psychotropic drugs on zooplankton in aquatic ecosystems.


Assuntos
Daphnia magna , Agonistas do Receptor 5-HT1 de Serotonina , Transcriptoma , Animais , Daphnia magna/efeitos dos fármacos , Comportamento Predatório , Transcriptoma/efeitos dos fármacos , Agonistas do Receptor 5-HT1 de Serotonina/farmacologia
14.
Mar Pollut Bull ; 202: 116306, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38574500

RESUMO

In this study, we investigated the combined effects of hypoxia and NPs on the water flea Daphnia magna, a keystone species in freshwater environments. To measure and understand the oxidative stress responses, we used acute toxicity tests, fluorescence microscopy, enzymatic assays, Western blot analyses, and Ingenuity Pathway Analysis. Our findings demonstrate that hypoxia and NPs exhibit a negative synergy that increases oxidative stress, as indicated by heightened levels of reactive oxygen species and antioxidant enzyme activity. These effects lead to more severe reproductive and growth impairments in D. magna compared to a single-stressor exposure. In this work, molecular investigations revealed complex pathway activations involving HIF-1α, NF-κB, and mitogen-activated protein kinase, illustrating the intricate molecular dynamics that can occur in combined stress conditions. The results underscore the amplified physiological impacts of combined environmental stressors and highlight the need for integrated strategies in the management of aquatic ecosystems.


Assuntos
Daphnia magna , Estresse Oxidativo , Poluentes Químicos da Água , Animais , Daphnia magna/efeitos dos fármacos , Daphnia magna/fisiologia , Hipóxia , Espécies Reativas de Oxigênio/metabolismo , Poluentes Químicos da Água/toxicidade
15.
BMC Vet Res ; 20(1): 143, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38622626

RESUMO

Polystyrene nanoplastic (PS-NPs) and Engine oil (EO) pose multiple ecotoxic effects with increasing threat to fish ecosystems. The current study investigated the toxicity of 15 days exposure to PS-NPs and / or EO to explore their combined synergistic effects on Nile tilapia, Oreochromis niloticus (O. niloticus). Hematobiochemical parameters, proinflammatory cytokines, and oxidative stress biomarkers as well as histological alterations were evaluated. The experimental design contained 120 acclimated Nile tilapia distributed into four groups, control, PS-NPs (5 mg/L), EO (1%) and their combination (PS-NPs + EO). After 15-days of exposure, blood and tissue samples were collected from all fish experimental groups. Results indicated that Nile tilapia exposed to PS-NPs and / or EO revealed a significant decrease in almost all the measured hematological parameters in comparison to the control, whereas WBCs and lymphocyte counts were significantly increased in the combined group only. Results clarified that the combined PS-NPs + EO group showed the maximum decrease in RBCs, Hb, MCH and MCHC, and showed the maximum significant rise in interleukin-1ß (IL-1ß), and interleukin-6 (IL-6) in comparison to all other exposed groups. Meanwhile, total antioxidant capacity (TAC) showed a significant (p < 0.05) decline only in the combination group, whereas reduced glutathione (GSH) showed a significant decline in all exposed groups in comparison to the control. Both malondialdehyde (MDA) and aspartate aminotransferase (AST) showed a significant elevation only in the combination group. Uric acid showed the maximum elevation in the combination group than all other groups, whereas creatinine showed significant elevation in the EO and combination group when compared to the control. Furthermore, the present experiment proved that exposure to these toxicants either individually or in combination is accompanied by pronounced histomorpholgical damage characterized by severe necrosis and hemorrhage of the vital organs of Nile tilapia, additionally extensively inflammatory conditions with leucocytes infiltration. We concluded that combination exposure to both PS-NPs and EO caused severe anemia, extreme inflammatory response, oxidative stress, and lipid peroxidation effects, thus they can synergize with each other to intensify toxicity in fish.


Assuntos
Ciclídeos , Microplásticos , Animais , Microplásticos/metabolismo , Microplásticos/farmacologia , Poliestirenos/toxicidade , Poliestirenos/metabolismo , Ecossistema , Fígado/metabolismo , Antioxidantes/metabolismo , Estresse Oxidativo , Interleucina-6/metabolismo
16.
Comput Struct Biotechnol J ; 23: 1654-1665, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38680870

RESUMO

High-yield production of therapeutic protein using Chinese hamster ovary (CHO) cells requires stable cell line development (CLD). CLD typically uses random integration of transgenes; however, this results in clonal variation and subsequent laborious clone screening. Therefore, site-specific integration of a protein expression cassette into a desired chromosomal locus showing high transcriptional activity and stability, referred to as a hot spot, is emerging. Although positional effects are important for therapeutic protein expression, the sequence-specific mechanisms by which hotspots work are not well understood. In this study, we performed whole-genome sequencing (WGS) to locate randomly inserted vectors in the genome of recombinant CHO cells expressing high levels of monoclonal antibodies (mAbs) and experimentally validated these locations and vector compositions. The integration site was characterized by active histone marks and potential enhancer activities, and clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) mediated indel mutations in the region upstream of the integration site led to a significant reduction in specific antibody productivity by up to 30%. Notably, the integration site and its core region did not function equivalently outside the native genomic context, showing a minimal effect on the increase in exogenous protein expression in the host cell line. We also observed a superior production capacity of the mAb expressing cell line compared to that of the host cell line. Collectively, this study demonstrates that developing recombinant CHO cell lines to produce therapeutic proteins at high levels requires a balance of factors including transgene configuration, genomic locus landscape, and host cell properties.

17.
Sci Total Environ ; 922: 171426, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38432363

RESUMO

Climate warming influences the biological activities of aquatic organisms, including feeding, growth, and reproduction, thereby affecting predator-prey interactions. This study explored the variation in thermal sensitivity of anti-predator responses in two cladoceran species with varying body sizes, Daphnia pulex and Ceriodaphnia cornuta. These species were cultured with or without the fish (Rhodeus ocellatus) kairomone at temperatures of 15, 20, 25, and 30 °C for 15 days. Results revealed that cladocerans of different body sizes exhibited varying responses to fish kairomones in aspects such as individual size, first-brood neonate size, total offspring number, average brood size, growth rate, and reproductive effort. Notably, low temperature differently affected defense responses in cladocerans of different body sizes. Both high and low temperatures moderated the intensity of the kairomone-induced response on body size at maturity. Additionally, low temperature reversed the reducing effect of fish kairomone on the total offspring number, average brood size, and reproductive effort in D. pulex. Conversely, it enhanced the increasing effect of fish kairomone on these parameters in C. cornuta. These results suggest that inducible anti-predator responses in cladocerans are modifiable by temperature. The differential effects of fish kairomones on various cladocerans under temperature influence offer crucial insights for predicting changes in predator-prey interactions within freshwater ecosystems under future climate conditions.


Assuntos
Cladocera , Cipriniformes , Animais , Cladocera/fisiologia , Daphnia , Ecossistema , Feromônios/farmacologia , Tamanho Corporal , Comportamento Predatório
18.
Sci Total Environ ; 920: 170902, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38354791

RESUMO

Triclosan (TCS) is an antibacterial agent commonly used in personal care products. Due to its widespread use and improper disposal, it is also a pervasive contaminant, particularly in aquatic environments. When released into water bodies, TCS can induce deleterious effects on developmental and physiological aspects of aquatic organisms and also interact with environmental stressors such as weather, metals, pharmaceuticals, and microplastics. Multiple studies have described the adverse effects of TCS on aquatic organisms, but few have reported on the interactions between TCS and other environmental conditions and pollutants. Because aquatic environments include a mix of contaminants and natural factors can correlate with contaminants, it is important to understand the toxicological outcomes of combinations of substances. Due to its lipophilic characteristics, TCS can interact with a wide range of substances and environmental stressors in aquatic environments. Here, we identify a need for caution when using TCS by describing not only the effects of exposure to TCS alone on aquatic organisms but also how toxicity changes when it acts in combination with multiple environmental stressors.


Assuntos
Poluentes Ambientais , Triclosan , Poluentes Químicos da Água , Triclosan/análise , Organismos Aquáticos , Plásticos , Poluentes Químicos da Água/análise
19.
Sci Total Environ ; 923: 171277, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38408651

RESUMO

Black sand along the Red Sea is often composed of volcanic minerals and heavy minerals. The Red Sea region is known for its unique geological features, and black sand beaches can be found in various areas along its shores. The study presents a comprehensive semi-quantitative chemical analysis of black sand samples collected from various locations along the red sea, revealing significant variations in their elemental compositions. The main oxides were identified in each sample, determined through X-ray diffraction (XRD) and X-ray fluorescence (XRF) analyses, indicate diverse mineralogical compositions. The spatial distribution of minerals at each site is depicted through mapping. Additionally, Fourier-transform infrared (FTIR) spectra offer information on the functional groups present in the samples, revealing the existence of hydroxyl groups, aliphatic compounds, and adsorbed water molecules. For Qusier-Elsharm Alqbly, Safaga, Marsa Alam, Gabal Alrosass, Hurghada Titanic, Hurghada Elahiaa, Gemsa, and Ras Elbehar samples, the results highlight the presence of various minerals, such as Quartz, Calcite, Titanium Dioxide, Magnetite, Hematite, Aluminum Oxide, Zirconium Dioxide, Chromium (III) Oxide, and others, providing insights into the geological characteristics of each location. The differences in mineral content among the examined sites are linked to the geological and mineralogical makeup of the source rocks upstream and midstream in the basins that discharge into the surveyed regions. So, variations in black sand concentrations among different locations offer insights into the geological and mineralogical diversity of the studied areas along the Red Sea coast. This study addresses the existing knowledge gap by focusing on the preliminary exploration and description of the occurrence, distribution, and composition of black sand along the Red Sea in Egypt. whereas the results provide valuable insights into the geological diversity of black sand deposits in the surveyed areas, underscoring the need for additional research and interpretation of these variations. Therefore, the in-depth examination of mineralogical composition and crystal structures establishes a foundation for future investigations in the field of geology and earth sciences.

20.
Int J Biol Macromol ; 262(Pt 2): 130194, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38360222

RESUMO

Gelatin methacrylate (GelMA) bioink has been widely used in bioprinting because it is a printable and biocompatible biomaterial. However, it is difficult to print GelMA bioink without any temperature control because it has a thermally-sensitive rheological property. Therefore, in this study, we developed a temperature-controlled printing system in real time without affecting the viability of the cells encapsulated in the bioink. In addition, a skin-derived decellularized extracellular matrix (SdECM) was printed with GelMA to better mimic the native tissue environment compared with solely using GelMA bioink with the enhancement of structural stability. The temperature setting accuracy was calculated to be 98.58 ± 1.8 % for the module and 99.48 ± 1.33 % for the plate from 5 °C to 37 °C. The group of the temperature of the module at 10 °C and the plate at 20 °C have 93.84 % cell viability with the printable range in the printability window. In particular, the cell viability and proliferation were increased in the encapsulated fibroblasts in the GelMA/SdECM bioink, relative to the GelMA bioink, with a morphology that significantly spread for seven days. The gene expression and growth factors related to skin tissue regeneration were relatively upregulated with SdECM components. In the bioprinting process, the rheological properties of the GelMA/SdECM bioink were successfully adjusted in real time to increase printability, and the native skin tissue mimicked components providing tissue-specific biofunctions to the encapsulated cells. The developed bioprinting strategies and bioinks could support future studies related to the skin tissue reconstruction, regeneration, and other medical applications using the bioprinting process.


Assuntos
Gelatina , Alicerces Teciduais , Alicerces Teciduais/química , Gelatina/química , Metacrilatos/química , Impressão Tridimensional , Materiais Biocompatíveis , Engenharia Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA