Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Cell Rep ; 43(2): 41, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38246942

RESUMO

KEY MESSAGE: CRISPR/Cas9-edited TOMATO AGAMOUS-LIKE1 (TAGL1) provided new insights into fruit ripening. TOMATO AGAMOUS LIKE 1 (TAGL1) has been identified as playing a key role in the process of tomato fruit development and ripening. We have re-evaluated the functions of TAGL1 using CRISPR/Cas9 mutagenesis. Three KO mutants contained frameshift mutations resulting in premature termination codons due to a 1 bp insertion. TAGL1-KO mutants exhibited dark immature fruits and orange ripening fruits. The fruit shape was characterized by a prominent pointed tip at the end and the pericarp thickness was significantly thinner. TAGL1-KO mutants showed reduced ethylene biosynthesis, increased firmness, and delayed onset of ripening. The chlorophyll content of TAGL1-KO mutants was higher in the mature green stage and the lycopene content of TAGL1-KO mutants in the ripening stage was lower compared to the WT. ACS2, ACS4, ACO1, ACO3, PG2a, PL, PME, EXP1, and PSY1 in the mutants were significantly down-regulated during ripening. Ripening fruits in the double mutant of rin and tagl1 showed a more extreme phenotype than the rin mutant suggesting that the double mutation acts synergistically during ripening. TAGL1-targeted mutagenesis by CRISPR/Cas9 strengthens its regulatory functions controlling ripening parameters and provides new insights into fruit ripening.


Assuntos
Solanum lycopersicum , Solanum lycopersicum/genética , Frutas/genética , Sistemas CRISPR-Cas/genética , Mutagênese/genética , Mutação/genética
2.
Bioresour Technol ; 393: 130158, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38070579

RESUMO

Mucic acid holds promise as a platform chemical for bio-based nylon synthesis; however, its biological production encounters challenges including low yield and productivity. In this study, an efficient and high-yield method for mucic acid production was developed by employing genetically engineered Saccharomyces cerevisiae expressing the NAD+-dependent uronate dehydrogenase (udh) gene. To overcome the NAD+ dependency for the conversion of pectin to mucic acid, xylose was utilized as a co-substrate. Through optimization of the udh expression system, the engineered strain achieved a notable output, producing 20 g/L mucic acid with a highest reported productivity of 0.83 g/L-h and a theoretical yield of 0.18 g/g when processing pectin-containing citrus peel waste. These results suggest promising industrial applications for the biological production of mucic acid. Additionally, there is potential to establish a viable bioprocess by harnessing pectin-rich fruit waste alongside xylose-rich cellulosic biomass as raw materials.


Assuntos
Citrus , Saccharomyces cerevisiae , Açúcares Ácidos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Xilose/metabolismo , Fermentação , Citrus/metabolismo , NAD/metabolismo , Pectinas , Engenharia Metabólica/métodos
3.
Plant Physiol ; 192(2): 1289-1306, 2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-36715630

RESUMO

Carotenoids and apocarotenoids function as pigments and flavor volatiles in plants that enhance consumer appeal and offer health benefits. Tomato (Solanum lycopersicum.) fruit, especially those of wild species, exhibit a high degree of natural variation in carotenoid and apocarotenoid contents. Using positional cloning and an introgression line (IL) of Solanum habrochaites "LA1777', IL8A, we identified carotenoid cleavage dioxygenase 4 (CCD4) as the factor responsible for controlling the dark orange fruit color. CCD4b expression in ripe fruit of IL8A plants was ∼8,000 times greater than that in the wild type, presumably due to 5' cis-regulatory changes. The ShCCD4b-GFP fusion protein localized in the plastid. Phytoene, ζ-carotene, and neurosporene levels increased in ShCCD4b-overexpressing ripe fruit, whereas trans-lycopene, ß-carotene, and lutein levels were reduced, suggestive of feedback regulation in the carotenoid pathway by an unknown apocarotenoid. Solid-phase microextraction-gas chromatography-mass spectrometry analysis showed increased levels of geranylacetone and ß-ionone in ShCCD4b-overexpressing ripe fruit coupled with a ß-cyclocitral deficiency. In carotenoid-accumulating Escherichia coli strains, ShCCD4b cleaved both ζ-carotene and ß-carotene at the C9-C10 (C9'-C10') positions to produce geranylacetone and ß-ionone, respectively. Exogenous ß-cyclocitral decreased carotenoid synthesis in the ripening fruit of tomato and pepper (Capsicum annuum), suggesting feedback inhibition in the pathway. Our findings will be helpful for enhancing the aesthetic and nutritional value of tomato and for understanding the complex regulatory mechanisms of carotenoid and apocarotenoid biogenesis.


Assuntos
Dioxigenases , Solanum lycopersicum , Solanum lycopersicum/genética , beta Caroteno/metabolismo , zeta Caroteno/análise , zeta Caroteno/metabolismo , Dioxigenases/genética , Dioxigenases/metabolismo , Carotenoides/metabolismo , Frutas/metabolismo
4.
5.
Plants (Basel) ; 11(12)2022 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-35736702

RESUMO

Bacterial wilt caused by the ß-proteobacterium Ralstonia solanacearum is one of the most destructive soil-borne pathogens in peppers (Capsicum annuum L.) worldwide. Cultivated pepper fields in Korea face a continuous spread of this pathogen due to global warming. The most efficient and sustainable strategy for controlling bacterial wilt is to develop resistant pepper varieties. Resistance, which is quantitatively inherited, occurs differentially depending on R. solanacearum isolates. Therefore, in this study, we aimed to identify resistance quantitative trait loci (QTLs) in two F2 populations derived from self-pollination of a highly resistant pepper cultivar 'Konesian hot' using a moderately pathogenic 'HS' isolate and a highly pathogenic 'HWA' isolate of R. solanacearum for inoculation, via genotyping-by-sequencing analysis. QTL analysis revealed five QTLs, Bwr6w-7.2, Bwr6w-8.1, Bwr6w-9.1, Bwr6w-9.2, and Bwr6w-10.1, conferring resistance to the 'HS' isolate with R2 values of 13.05, 12.67, 15.07, 10.46, and 9.69%, respectively, and three QTLs, Bwr6w-5.1, Bwr6w-6.1, and Bwr6w-7.1, resistant to the 'HWA' isolate with phenotypic variances of 19.67, 16.50, and 12.56%, respectively. Additionally, six high-resolution melting (HRM) markers closely linked to the QTLs were developed. In all the markers, the mean disease index of the paternal genotype was significantly lower than that of the maternal genotype. The QTLs and HRM markers are expected to be useful for the development of pepper varieties with high resistance to bacterial wilt.

6.
Plant Physiol ; 190(1): 250-266, 2022 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-35512210

RESUMO

Although multiple vital genes with strong effects on the tomato (Solanum lycopersicum) ripening process have been identified via the positional cloning of ripening mutants and cloning of ripening-related transcription factors (TFs), recent studies suggest that it is unlikely that we have fully characterized the gene regulatory networks underpinning this process. Here, combining comparative transcriptomics and expression QTLs, we identified 16 candidate genes involved in tomato fruit ripening and validated them through virus-induced gene silencing analysis. To further confirm the accuracy of the approach, one potential ripening regulator, SlWD40 (WD-40 repeats), was chosen for in-depth analysis. Co-expression network analysis indicated that master regulators such as RIN (ripening inhibitor) and NOR (nonripening) as well as vital TFs including FUL1 (FRUITFUL1), SlNAC4 (NAM, ATAF1,2, and CUC2 4), and AP2a (Activating enhancer binding Protein 2 alpha) strongly co-expressed with SlWD40. Furthermore, SlWD40 overexpression and RNAi lines exhibited substantially accelerated and delayed ripening phenotypes compared with the wild type, respectively. Moreover, transcriptome analysis of these transgenics revealed that expression patterns of ethylene biosynthesis genes, phytoene synthase, pectate lyase, and branched chain amino transferase 2, in SlWD40-RNAi lines were similar to those of rin and nor fruits, which further demonstrated that SlWD40 may act as an important ripening regulator in conjunction with RIN and NOR. These results are discussed in the context of current models of ripening and in terms of the use of comparative genomics and transcriptomics as an effective route for isolating causal genes underlying differences in genotypes.


Assuntos
Solanum lycopersicum , Etilenos/metabolismo , Frutas/genética , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Transcriptoma/genética
7.
Sci Rep ; 12(1): 5001, 2022 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-35322121

RESUMO

Solanum nigrum, known as black nightshade, is a medicinal plant that contains many beneficial metabolites in its fruit. The molecular mechanisms underlying the synthesis of these metabolites remain uninvestigated due to limited genetic information. Here, we identified 47,470 unigenes of S. nigrum from three different tissues by de novo transcriptome assembly, and 78.4% of these genes were functionally annotated. Moreover, gene ontology (GO) analysis using 18,860 differentially expressed genes (DEGs) revealed tissue-specific gene expression regulation. We compared gene expression patterns between S. nigrum and tomato (S. lycopersicum) in three tissue types. The expression patterns of carotenoid biosynthetic genes were different between the two species. Comparison of the expression patterns of flavonoid biosynthetic genes showed that 9 out of 14 enzyme-coding genes were highly upregulated in the fruit of S. nigrum. Using CRISPR-Cas9-mediated gene editing, we knocked out the R2R3-MYB transcription factor SnAN2 gene, an ortholog of S. lycopersicum ANTHOCYANIN 2. The mutants showed yellow/green fruits, suggesting that SnAN2 plays a major role in anthocyanin synthesis in S. nigrum. This study revealed the connection between gene expression regulation and corresponding phenotypic differences through comparative analysis between two closely related species and provided genetic resources for S. nigrum.


Assuntos
Solanum lycopersicum , Solanum nigrum , Antocianinas , Frutas/genética , Frutas/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Solanum nigrum/metabolismo , Fatores de Transcrição/metabolismo , Transcriptoma
8.
BMC Plant Biol ; 21(1): 530, 2021 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-34772358

RESUMO

BACKGROUND: Alba (Acetylation lowers binding affinity) proteins are an ancient family of nucleic acid-binding proteins that function in gene regulation, RNA metabolism, mRNA translatability, developmental processes, and stress adaptation. However, comprehensive bioinformatics analysis on the Alba gene family of Solanum lycopersicum has not been reported previously. RESULTS: In the present study, we undertook the first comprehensive genome-wide characterization of the Alba gene family in tomato (Solanum lycopersicum L.). We identified eight tomato Alba genes, which were classified into two groups: genes containing a single Alba domain and genes with a generic Alba domain and RGG/RG repeat motifs. Cis-regulatory elements and target sites for miRNAs, which function in plant development and stress responses, were prevalent in SlAlba genes. To explore the structure-function relationships of tomato Alba proteins, we predicted their 3D structures, highlighting their likely interactions with several putative ligands. Confocal microscopy revealed that SlAlba-GFP fusion proteins were localized to the nucleus and cytoplasm, consistent with putative roles in various signalling cascades. Expression profiling revealed the differential expression patterns of most SlAlba genes across diverse organs. SlAlba1 and SlAlba2 were predominantly expressed in flowers, whereas SlAlba5 expression peaked in 1 cm-diameter fruits. The SlAlba genes were differentially expressed (up- or downregulated) in response to different abiotic stresses. All but one of these genes were induced by abscisic acid treatment, pointing to their possible regulatory roles in stress tolerance via an abscisic acid-dependent pathway. Furthermore, co-expression of SlAlba genes with multiple genes related to several metabolic pathways spotlighted their crucial roles in various biological processes and signalling. CONCLUSIONS: Our characterization of SlAlba genes should facilitate the discovery of additional genes associated with organ and fruit development as well as abiotic stress adaptation in tomato.


Assuntos
Frutas/metabolismo , Proteínas de Plantas/metabolismo , Solanum lycopersicum/metabolismo , Frutas/genética , Regulação da Expressão Gênica de Plantas , Solanum lycopersicum/genética , Proteínas de Plantas/genética , Estresse Fisiológico/genética , Estresse Fisiológico/fisiologia
9.
Front Physiol ; 12: 744272, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34671276

RESUMO

Salicylic acid is a plant hormone that can mediate various plant physiological processes. Salicylic acid can bind to human high mobility group box 1 (HMGB1) and interrupt its role in mediating immune responses. Dorsal switch protein 1 (DSP1) is an insect homolog of HMGB1. In this study, a DSP1 (Se-DSP1) encoded in Spodoptera exigua, a phytophagous insect, was characterized, and its potential role in immune response was explored. Upon bacterial challenge, Se-DSP1 was localized in the nucleus and released into the hemolymph. The released Se-DSP1 could mediate both cellular and humoral immune responses by activating eicosanoid biosynthesis. Salicylic acid could bind to Se-DSP1 with a high affinity. The immune responses of S. exigua were significantly interrupted by SA feeding. Larvae reared on tomatoes with high endogenous SA levels became more susceptible to entomopathogens. Taken together, these results suggest a tritrophic defensive role of plant SA against phytophagous insects.

10.
Front Plant Sci ; 12: 809959, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35154207

RESUMO

Bacterial canker caused by Clavibacter michiganensis (Cm) is one of the most economically important vascular diseases causing unilateral leaf wilting, stem canker, a bird's-eye lesion on fruit, and whole plant wilting in tomato. There is no commercially available cultivar with bacterial canker resistance, and genomics-assisted breeding can accelerate the development of cultivars with enhanced resistance. Solanum lycopersicum "Hawaii 7998" was found to show bacterial canker resistance. A Quantitative trait loci (QTL)-seq was performed to identify the resistance loci using 909 F2 individuals derived from a cross between S. lycopersicum "E6203" (susceptible) and "Hawaii 7998," and a genomic region (37.24-41.15 Mb) associated with bacterial canker resistance on chromosome 6 (Rcm6) was found. To dissect the Rcm6 region, 12 markers were developed and several markers were associated with the resistance phenotypes. Among the markers, the Rcm6-9 genotype completely matched with the phenotype in the 47 cultivars. To further validate the Rcm6 as a resistance locus and the Rcm6-9 efficiency, subsequent analysis using F2 and F3 progenies was conducted. The progeny individuals with homozygous resistance allele at the Rcm6-9 showed significantly lower disease severity than those possessing homozygous susceptibility alleles. Genomes of five susceptible and two resistant cultivars were analyzed and previously known R-genes were selected to find candidate genes for Rcm6. Nucleotide-binding leucine-rich repeat, receptor-like kinase, and receptor-like protein were identified to have putative functional mutations and show differential expression upon the Cm infection. The DNA markers and candidate genes will facilitate marker-assisted breeding and provide genetic insight of bacterial canker resistance in tomato.

11.
Plants (Basel) ; 10(1)2020 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-33374801

RESUMO

Tomato yellow leaf curl virus (TYLCV) is a disease that is damaging to tomato production worldwide. Resistance to TYLCV has been intensively investigated, and single resistance genes such as Ty-1 have been widely deployed in breeding programs. However, resistance-breaking incidences are frequently reported, and achieving durable resistance against TYLCV in the field is important. In this study, gene-specific markers for Ty-2 and ty-5, and closely-linked markers for Ty-4 were developed and applied to distinguish TYLCV resistance in various tomato genotypes. Quantitative infectivity assays using both natural infection in the field and artificial inoculation utilizing infectious TYLCV clones in a growth chamber were optimized and performed to investigate the individual and cumulative levels of resistance. We confirmed that Ty-2 could also be an effective source of resistance for TYLCV control, together with Ty-1. Improvement of resistance as a result of gene-pyramiding was speculated, and breeding lines including both Ty-1 and Ty-2 showed the strongest resistance in both field and artificial infections.

12.
Breed Sci ; 70(4): 462-473, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32968349

RESUMO

Bacterial wilt, caused by the Ralstonia pseudosolanacearum species complex, is an important vascular disease that limits tomato production in tropical and subtropical regions. Two major quantitative trait loci (QTL) of bacterial wilt resistance on chromosome 6 (Bwr-6) and 12 (Bwr-12) were previously identified in Solanum lycopersicum 'Hawaii 7996'; however, marker-assisted breeding for bacterial wilt resistance is not well established. To dissect the QTL, six cleaved amplified polymorphic sites (CAPS) and derived CAPS (dCAPS) markers within the Bwr-6 region and one dCAPS marker near Bwr-12 were developed, and resistance levels in 117 tomato cultivars were evaluated. Two markers, RsR6-5 on chromosome 6 and RsR12-1 on chromosome 12, were selected based on the genotypic and phenotypic analysis. The combination of RsR6-5 and RsR12-1 effectively distinguishes resistant and susceptible cultivars. Furthermore, the efficiency of the two markers was validated in the F3 generation derived from the F2 population between E6203 (susceptible) and Hawaii 7998 (resistant). Resistant alleles at both loci led to the resistance to bacterial wilt. These markers will facilitate marker-assisted breeding of tomato resistant to bacterial wilt.

13.
BMC Plant Biol ; 20(1): 283, 2020 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-32560687

RESUMO

BACKGROUND: MicroRNAs (miRNAs) are short non-coding RNAs that can influence gene expression via diverse mechanisms. Tomato is a fruit widely consumed for its flavor, culinary attributes, and high nutritional quality. Tomato fruit are climacteric and fleshy, and their ripening is regulated by endogenous and exogenous signals operating through a coordinated genetic network. Much research has been conducted on mechanisms of tomato fruit ripening, but the roles of miRNA-regulated repression/expression of specific regulatory genes are not well documented. RESULTS: In this study, we demonstrate that miR172 specifically targets four SlAP2 transcription factor genes in tomato. Among them, SlAP2a was repressed by the overexpression of SlmiR172, manifesting in altered flower morphology, development and accelerated ripening. miR172 over-expression lines specifically repressed SlAP2a, enhancing ethylene biosynthesis, fruit color and additional ripening characteristics. Most previously described ripening-regulatory genes, including RIN-MADS, NR, TAGL1 and LeHB-1 were not influenced by miR172 while CNR showed altered expression. CONCLUSIONS: Tomato fruit ripening is directly influenced by miR172 targeting of the APETALA2 transcription factor, SlAP2a, with minimal influence over additional known ripening-regulatory genes. miR172a-guided SlAP2a expression provides insight into another layer of genetic control of ripening and a target for modifying the quality and nutritional value of tomato and possibly other fleshy fruit crops.


Assuntos
Expressão Ectópica do Gene , Frutas/crescimento & desenvolvimento , Proteínas de Homeodomínio/genética , MicroRNAs/genética , Proteínas de Plantas/genética , Solanum lycopersicum/genética , Frutas/genética , Redes Reguladoras de Genes , Proteínas de Homeodomínio/metabolismo , Solanum lycopersicum/crescimento & desenvolvimento , MicroRNAs/metabolismo , Proteínas de Plantas/metabolismo
14.
Theor Appl Genet ; 133(6): 1897-1910, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32088729

RESUMO

KEY MESSAGE: The Pseudo-Response Regulator 2 gene was identified in the c1 locus, representing a genetic factor regulating fruit color in pepper using GBS-based BSA-seq. The loci c1, c2, and y have been widely reported as genetic determinants of various ripe fruit colors in pepper. However, c1, which may impact reduced pigmentation in red, orange, and yellow fruits, is not well understood. Two cultivars showing peach or orange fruit in Capsicum chinense 'Habanero' were found to have c2 mutation and were hypothesized to segregate c1 locus in the F2 population. Habanero peach (HP) showed a reduced level of chlorophylls, carotenoids and total soluble solids in immature and ripe fruits. A microscopic examination of the fruit pericarps revealed smaller plastids and less stacked thylakoid grana in HP. The expression of many genes related to chlorophyll and carotenoid biosynthetic pathways were reduced in HP. To identify the genomic region of the c1 locus, bulked segregant analysis combined with genotyping-by-sequencing was employed on an F2 population derived from a cross between Habanero orange and HP. One SNP at chromosome 1 was strongly associated with the peach fruit color. Pepper Pseudo-Response Regulator 2 (PRR2) was located close to the SNP and cosegregated with the peach fruit color. A 41 bp deletion at the third exon-intron junction region of CcPRR2 in HP resulted in a premature termination codon. A nonsense mutation of CaPRR2 was found in C. annuum 'IT158782' which had white ripe fruit coupled with null mutations of capsanthin-capsorubin synthase (y) and phytoene synthase 1 (c2). These results will be useful for the genetic improvement in fruit color and nutritional quality in pepper.


Assuntos
Capsicum/genética , Capsicum/fisiologia , Mapeamento Cromossômico , Cor , Frutas/genética , Genes de Plantas , Genótipo , Modelos Genéticos , Pigmentação/genética , Proteínas de Plantas/genética , Plastídeos/genética , Polimorfismo de Nucleotídeo Único
15.
Antioxidants (Basel) ; 9(1)2019 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-31877964

RESUMO

Light is a major environmental factor affecting the regulation of secondary metabolites, such as pigments and flavor. The Solanaceae plant family has diverse patterns of fruit metabolisms that serve as suitable models to understand the molecular basis of its regulation across species. To investigate light-dependent regulation for fruit pigmentation and volatile flavors, major fruit pigments, their biosynthetic gene expression, and volatiles were analyzed in covered fruits of tomato and bell pepper. Immature covered fruits were found to be ivory in color and no chlorophyll was detected in both plants. The total carotenoid content was found to be reduced in ripe tomato and bell pepper under cover. Naringenin chalcone decreased more than 7-fold in ripe tomato and total flavonoids decreased about 10-fold in immature and ripe pepper fruit under light deficiency. Light positively impacts fruit pigmentation in tomato and bell pepper by regulating gene expression in carotenoid and flavonoid biosynthesis, especially phytoene synthase and chalcone synthase, respectively. Nineteen volatile flavors were detected, and seven of these exhibited light-dependent regulations for both ripe tomato and pepper. This study will help in improving fruit quality and aid future research works to understand the molecular mechanisms regulating the influence of light-dependency on pigments and flavor volatiles.

16.
Plant Methods ; 15: 110, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31592162

RESUMO

BACKGROUND: Past research has shown that virus-induced phytoene desaturase (PDS) gene silencing via agroinjection in the attached and detached fruit of tomato plants results in a pale-yellow fruit phenotype. Although the PDS gene is often used as a marker for gene silencing in tomatoes, little is known about the role of PDS in fruit ripening. In this study, we investigated whether the pepper PDS gene silenced endogenous PDS genes in the fruit of two tomato cultivars, Dotaerang Plus and Legend Summer. RESULTS: We found that the pepper PDS gene successfully silenced endogenous PDS in tomato fruit at a silencing frequency of 100% for both cultivars. A pale-yellow silenced area was observed over virtually the entire surface of individual fruit due to the transcriptional reduction in phytoene desaturase (PDS), zeta-carotene (ZDS), prolycopene isomerase (CrtlSO), and beta-carotene hydroxylase (CrtR-b2), which are the carotenoid biosynthesis genes responsible for the red coloration in tomatoes. PDS silencing also affected the expression levels of the fruit-ripening genes Tomato AGAMOUS-LIKE1 (TAGL1), RIPENING INHIBITOR (RIN), pectin esterase gene (PE), lipoxygenase (LOX), FRUITFULL1/FRUITFUL2 (FUL1/FUL2), and the ethylene biosynthesis and response genes 1-aminocyclopropane-1-carboxylate oxidase 1 and 3 (ACO1 and ACO3) and ethylene-responsive genes (E4 and E8). CONCLUSION: These results suggest that PDS is a positive regulator of ripening in tomato fruit, which must be considered when using it as a marker for virus-induced gene silencing (VIGS) experiments in order to avoid fruit-ripening side effects.

17.
PLoS One ; 13(9): e0202279, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30183712

RESUMO

We assembled three complete mitochondrial genomes (mitogenomes), two of Solanum lycopersicum and one of Solanum pennellii, and analyzed their intra- and interspecific variations. The mitogenomes were 423,596-446,257 bp in length. Despite numerous rearrangements between the S. lycopersicum and S. pennellii mitogenomes, over 97% of the mitogenomes were similar to each other. These mitogenomes were compared with plastid and nuclear genomes to investigate genetic material transfers among DNA-containing organelles in tomato. In all mitogenomes, 9,598 bp of plastome sequences were found. Numerous nuclear copies of mitochondrial DNA (NUMTs) and plastid DNA (NUPTs) were observed in the S. lycopersicum and S. pennellii nuclear genomes. Several long organellar DNA fragments were tightly clustered in the nuclear genome; however, the NUMT and NUPT locations differed between the two species. Our results demonstrate the recent occurrence of frequent endosymbiotic gene transfers in tomato genomes.


Assuntos
DNA Mitocondrial/genética , Genoma Mitocondrial/genética , Solanum lycopersicum/genética , Solanum/genética , Simbiose/genética , Sequência de Bases , Núcleo Celular/genética , DNA Mitocondrial/química , Evolução Molecular , Genoma de Planta/genética , Solanum lycopersicum/classificação , Análise de Sequência de DNA , Homologia de Sequência do Ácido Nucleico
18.
Theor Appl Genet ; 131(5): 1017-1030, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29352323

RESUMO

KEY MESSAGE: Genotyping of disease resistance to bacterial wilt in tomato by a genome-wide SNP analysis Bacterial wilt caused by Ralstonia pseudosolanacearum is one of the destructive diseases in tomato. The previous studies have identified Bwr-6 (chromosome 6) and Bwr-12 (chromosome 12) loci as the major quantitative trait loci (QTLs) contributing to resistance against bacterial wilt in tomato cultivar 'Hawaii7996'. However, the genetic identities of two QTLs have not been uncovered yet. In this study, using whole-genome resequencing, we analyzed genome-wide single-nucleotide polymorphisms (SNPs) that can distinguish a resistant group, including seven tomato varieties resistant to bacterial wilt, from a susceptible group, including two susceptible to the same disease. In total, 5259 non-synonymous SNPs were found between the two groups. Among them, only 265 SNPs were located in the coding DNA sequences, and the majority of these SNPs were located on chromosomes 6 and 12. The genes that both carry SNP(s) and are near Bwr-6 and Bwr-12 were selected. In particular, four genes in chromosome 12 encode putative leucine-rich repeat (LRR) receptor-like proteins. SNPs within these four genes were used to develop SNP markers, and each SNP marker was validated by a high-resolution melting method. Consequently, one SNP marker, including a functional SNP in a gene, Solyc12g009690.1, could efficiently distinguish tomato varieties resistant to bacterial wilt from susceptible varieties. These results indicate that Solyc12g009690.1, the gene encoding a putative LRR receptor-like protein, might be tightly linked to Bwr-12, and the SNP marker developed in this study will be useful for selection of tomato cultivars resistant to bacterial wilt.


Assuntos
Resistência à Doença/genética , Doenças das Plantas/genética , Locos de Características Quantitativas , Solanum lycopersicum/genética , Mapeamento Cromossômico , Genes de Plantas , Solanum lycopersicum/microbiologia , Fenótipo , Doenças das Plantas/microbiologia , Polimorfismo de Nucleotídeo Único , Ralstonia
19.
Genome Biol ; 18(1): 210, 2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-29089032

RESUMO

BACKGROUND: Transposable elements are major evolutionary forces which can cause new genome structure and species diversification. The role of transposable elements in the expansion of nucleotide-binding and leucine-rich-repeat proteins (NLRs), the major disease-resistance gene families, has been unexplored in plants. RESULTS: We report two high-quality de novo genomes (Capsicum baccatum and C. chinense) and an improved reference genome (C. annuum) for peppers. Dynamic genome rearrangements involving translocations among chromosomes 3, 5, and 9 were detected in comparison between C. baccatum and the two other peppers. The amplification of athila LTR-retrotransposons, members of the gypsy superfamily, led to genome expansion in C. baccatum. In-depth genome-wide comparison of genes and repeats unveiled that the copy numbers of NLRs were greatly increased by LTR-retrotransposon-mediated retroduplication. Moreover, retroduplicated NLRs are abundant across the angiosperms and, in most cases, are lineage-specific. CONCLUSIONS: Our study reveals that retroduplication has played key roles for the massive emergence of NLR genes including functional disease-resistance genes in pepper plants.


Assuntos
Capsicum/genética , Resistência à Doença/genética , Evolução Molecular , Duplicação Gênica , Genes de Plantas , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Retroelementos/genética , Cromossomos de Plantas/genética , Especiação Genética , Anotação de Sequência Molecular , Família Multigênica , Proteínas NLR/genética , Fases de Leitura Aberta/genética , Filogenia , Padrões de Referência , Análise de Sequência de RNA , Especificidade da Espécie , Sequências Repetidas Terminais/genética
20.
Molecules ; 22(5)2017 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-28481314

RESUMO

Carotenoids are essential for plant and animal nutrition, and are important factors in the variation of pigmentation in fruits, leaves, and flowers. Tomato is a model crop for studying the biology and biotechnology of fleshy fruits, particularly for understanding carotenoid biosynthesis. In commercial tomato cultivars and germplasms, visual phenotyping of the colors of ripe fruits can be done easily. However, subsequent analysis of metabolic profiling is necessary for hypothesizing genetic factors prior to performing time-consuming genetic analysis. We used high performance liquid chromatography (HPLC), employing a C30 reverse-phase column, to efficiently resolve nine carotenoids and isomers of several carotenoids in yellow, orange, and red colored ripe tomatoes. High content of lycopene was detected in red tomatoes. The orange tomatoes contained three dominant carotenoids, namely δ-carotene, ß-carotene, and prolycopene. The yellow tomatoes showed low levels of carotenoids compared to red or orange tomatoes. Based on the HPLC profiles, genes responsible for overproducing δ-carotene and prolycopene were described as lycopene ε-cyclase and carotenoid isomerase, respectively. Subsequent genetic analysis using DNA markers for segregating population and germplasms were conducted to confirm the hypothesis. This study establishes the usefulness of metabolic profiling for inferring the genetic determinants of fruit color.


Assuntos
Carotenoides , Frutas , Pigmentação/genética , Solanum lycopersicum , Carotenoides/biossíntese , Carotenoides/genética , Frutas/genética , Frutas/metabolismo , Marcadores Genéticos , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...