Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Microbiol Immunol Infect ; 54(4): 649-657, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32169530

RESUMO

BACKGROUND: Nontyphoid Salmonella and Shigella can cause gastroenteritis in humans. Ceftriaxone (CRO) has been used to treat their infection, however, development of CRO resistance are often associated with plasmid-mediated blaCMY. Here, we investigated the presence of plasmid-mediated ISEcp-1 tnpA-blaCMY-2-blc-sugE and the role of these genes in regulation of CRO susceptibility in different hosts. METHODS: 194 strains of Salmonella serovars and Shigella were tested for CRO susceptibility. Non-susceptibility strains were examined for plasmid-mediated ISEcp-1 tnpA-blaCMY-2-blc-sugE by PCR amplification, Southern blot, and DNA sequencing. The plasmid profiles were determined by HindIII-digested restriction fragment length polymorphism (RFLP). Four recombinant plasmids with different genes from ISEcp-1 tnpA-blaCMY-2-blc-sugE were constructed and then were transferred into Escherichia coli and different Salmonella serovars to evaluate the CRO susceptibility. RESULTS: Among 20 CRO-nonsusceptible isolates of Salmonella Choleraesuis (5), S. Typhimurium (4), S. Mons (1), S. Stanley (2) and Shigella sonnei (8) with plasmid-mediated blaCMY-2, 19 isolates carried the ISEcp-1 tnpA-blaCMY-2-blc-sugE and only one isolate with tnpA-blaCMY-2. Transformation of these plasmids into E. coli pir116 produced multidrug resistance. Furthermore, PCR-RFLP analysis determined 5 different plasmid profiles and identical RFLP pattern between S. Typhimurium and S. sonnei. Transformation of the recombinant plasmids into E. coli and different Salmonella serovars resulted in phenotypes ranging from susceptible to resistant (especially inducible resistance) to CRO that were dependent on the genes, and host. CONCLUSION: The CRO susceptibility associated with the ISEcp-1 tnpA-blaCMY-2-blc-sugE element is regulated positively by ISEcp-1 tnpA and SugE and negatively regulated by Blc and unknown species-dependent host factor(s).


Assuntos
Antibacterianos/farmacologia , Ceftriaxona/farmacologia , Farmacorresistência Bacteriana/genética , Regulação Bacteriana da Expressão Gênica , Plasmídeos/genética , Salmonella/genética , Shigella/genética , beta-Lactamases/genética , China/epidemiologia , DNA Bacteriano/genética , Disenteria Bacilar/epidemiologia , Disenteria Bacilar/microbiologia , Humanos , Salmonella/efeitos dos fármacos , Infecções por Salmonella/epidemiologia , Infecções por Salmonella/microbiologia , Shigella/efeitos dos fármacos
2.
J Microbiol Immunol Infect ; 48(6): 647-54, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24863496

RESUMO

BACKGROUND: The misuse of antimicrobial agents increases drug resistance in bacteria. METHODS: The correlation between antimicrobial agent consumption and related resistance in the Gram-negative bacteria Acinetobacter baumannii, Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Proteus mirabilis was analyzed during the period 2003-2011. RESULTS: Among these five bacteria, overall E. coli and K. pneumoniae were more commonly isolated from bloodstream than the other species. Regarding Enterobacteriaceae, E. coli and K. pneumoniae showed annual increases of resistance to the tested antimicrobial agents; conversely, P. mirabilis exhibited reduced resistance to cefuroxime, ceftriaxone and cefepime. In contrast to the relatively low antimicrobial resistance in P. aeruginosa, A. baumannii revealed high resistance, which was over 85% resistant rate to the tested antimicrobial agents and over 80% carbapenem resistance in 2011. E. coli, K. pneumoniae, and P. mirabilis differed in development of antimicrobial resistance after consumption of the antimicrobial agents. K. pneumoniae developed resistance to all antimicrobial groups, whereas resistance in P. mirabilis was not related to any antimicrobial consumption. P. aeruginosa developed resistance to ß-lactam antimicrobials and aminoglycosides, whereas A. baumanii developed resistance to carbapenems after their use. CONCLUSION: The development of antimicrobial resistance was related to antimicrobial agents and bacterial species.


Assuntos
Antibacterianos/uso terapêutico , Farmacorresistência Bacteriana Múltipla , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Negativas/isolamento & purificação , Infecções por Bactérias Gram-Negativas/tratamento farmacológico , Técnicas de Tipagem Bacteriana , Infecções por Bactérias Gram-Negativas/microbiologia , Hospitais , Humanos , Testes de Sensibilidade Microbiana , Estudos Retrospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...