Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
NPJ Microgravity ; 9(1): 76, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37714858

RESUMO

Astronauts are exposed to harsh conditions, including cosmic radiation and microgravity. Spaceflight elongates human telomeres in peripheral blood, which shorten upon return to Earth and approach baseline levels during postflight recovery. Astronauts also encounter muscle atrophy, losing up to 20% loss of muscle mass on spaceflights. Telomere length changes in muscle cells of astronauts remain unexplored. This study investigates telomere alterations in grounded mice experiencing radiation exposure and muscle atrophy, via a hindlimb unloading spaceflight mimicking model. We find telomere lengthening is present in muscle stem cells and in myofiber nuclei, but not in muscle-resident endothelial cells. We further assessed telomere length in the model following hindlimb unloading recovery. We find that telomere length failed to return to baseline values. Our results suggest a role for telomeres in muscle acclimatization, which is relevant for the well-being of astronauts in space, and upon their return to Earth.

2.
Cell Stem Cell ; 29(9): 1287-1289, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-36055187

RESUMO

Muscle stem cells (MuSCs) exhibit different metabolic profiles depending on their activity, however the mechanisms by which mitochondria affect MuSC fate has been understudied. In this issue of Cell Stem Cell, Hong et al. (2022) and Baker et al. (2022) demonstrate that defects in mitochondrial dynamics hinder proper MuSC activation and impair muscle regeneration.


Assuntos
Dinâmica Mitocondrial , Músculo Esquelético , Mioblastos/metabolismo
3.
Sci Adv ; 8(11): eabn0485, 2022 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-35302846

RESUMO

Muscle stem cells (MuSCs) are essential for tissue homeostasis and regeneration, but the potential contribution of MuSC morphology to in vivo function remains unknown. Here, we demonstrate that quiescent MuSCs are morphologically heterogeneous and exhibit different patterns of cellular protrusions. We classified quiescent MuSCs into three functionally distinct stem cell states: responsive, intermediate, and sensory. We demonstrate that the shift between different stem cell states promotes regeneration and is regulated by the sensing protein Piezo1. Pharmacological activation of Piezo1 is sufficient to prime MuSCs toward more responsive cells. Piezo1 deletion in MuSCs shifts the distribution toward less responsive cells, mimicking the disease phenotype we find in dystrophic muscles. We further demonstrate that Piezo1 reactivation ameliorates the MuSC morphological and regenerative defects of dystrophic muscles. These findings advance our fundamental understanding of how stem cells respond to injury and identify Piezo1 as a key regulator for adjusting stem cell states essential for regeneration.

4.
Cancers (Basel) ; 13(18)2021 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-34572878

RESUMO

Few studies have examined the role of BAG2 in malignancies. We investigated the prognostic value of BAG2-expression in cancer-associated fibroblasts (CAFs) and tumor cells in predicting metastasis-free survival in patients with breast cancer. Tissue-microarray was constructed using human breast cancer tissues obtained by surgical resection between 1992 and 2015. BAG2 expression was evaluated by immunohistochemistry in CAFs or the tumor cells. BAG2 expression in the CAFs and cytoplasm of tumor cells was classified as positive and negative, and low and high, respectively. BAG2-CAF was evaluated in 310 patients and was positive in 67 (21.6%) patients. Kaplan-Meier plots showed that distant metastasis-free survival (DMFS) was lesser in patients with BAG2(+) CAF than in patients with BAG2(-) CAF (p = 0.039). Additionally, we classified the 310 patients into two groups: 109 in either BAG2-high or BAG2(+) CAF and 201 in BAG2-low and BAG2(-) CAF. DMFS was significantly reduced in patients with either BAG2-high or BAG2(+) CAF than in the patients of the other group (p = 0.005). Multivariable analysis demonstrated that DMFS was prolonged in patients with BAG2(-) CAF or BAG2-low. Evaluation of BAG2 expression on both CAFs and tumor cells could help in determining the risk of metastasis in breast cancer.

5.
PLoS One ; 16(5): e0252135, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34038481

RESUMO

Skeletal muscle atrophy is a feature of aging (termed sarcopenia) and various diseases, such as cancer and kidney failure. Effective drug treatment options for muscle atrophy are lacking. The tapeworm medication, niclosamide is being assessed for repurposing to treat numerous diseases, including end-stage cancer metastasis and hepatic steatosis. In this study, we investigated the potential of niclosamide as a repurposing drug for muscle atrophy. In a myotube atrophy model using the glucocorticoid, dexamethasone, niclosamide did not prevent the reduction in myotube diameter or the decreased expression of phosphorylated FOXO3a, which upregulates the ubiquitin-proteasome pathway of muscle catabolism. Treatment of normal myotubes with niclosamide did not activate mTOR, a major regulator of muscle protein synthesis, and increased the expression of atrogin-1, which is induced in catabolic states. Niclosamide treatment also inhibited myogenesis in muscle precursor cells, enhanced the expression of myoblast markers Pax7 and Myf5, and downregulated the expression of differentiation markers MyoD, MyoG and Myh2. In an animal model of muscle atrophy, niclosamide did not improve muscle mass, grip strength or muscle fiber cross-sectional area. Muscle atrophy is also feature of cancer cachexia. IC50 analyses indicated that niclosamide was more cytotoxic for myoblasts than cancer cells. In addition, niclosamide did not suppress the induction of iNOS, a key mediator of atrophy, in an in vitro model of cancer cachexia and did not rescue myotube diameter. Overall, these results suggest that niclosamide may not be a suitable repurposing drug for glucocorticoid-induced skeletal muscle atrophy or cancer cachexia. Nevertheless, niclosamide may be employed as a compound to study mechanisms regulating myogenesis and catabolic pathways in skeletal muscle.


Assuntos
Reposicionamento de Medicamentos/métodos , Atrofia Muscular/tratamento farmacológico , Niclosamida/uso terapêutico , Células A549 , Animais , Caquexia/tratamento farmacológico , Caquexia/metabolismo , Linhagem Celular Tumoral , Células HCT116 , Humanos , Concentração Inibidora 50 , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Atrofia Muscular/metabolismo , Proteína MyoD/metabolismo , Mioblastos/efeitos dos fármacos , Mioblastos/metabolismo , Miogenina/metabolismo , Cadeias Pesadas de Miosina/metabolismo
6.
Cells ; 10(5)2021 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-33925786

RESUMO

Inflammation-mediated skeletal muscle wasting occurs in patients with sepsis and cancer cachexia. Both conditions severely affect patient morbidity and mortality. Lithium chloride has previously been shown to enhance myogenesis and prevent certain forms of muscular dystrophy. However, to our knowledge, the effect of lithium chloride treatment on sepsis-induced muscle atrophy and cancer cachexia has not yet been investigated. In this study, we aimed to examine the effects of lithium chloride using in vitro and in vivo models of cancer cachexia and sepsis. Lithium chloride prevented wasting in myotubes cultured with cancer cell-conditioned media, maintained the expression of the muscle fiber contractile protein, myosin heavy chain 2, and inhibited the upregulation of the E3 ubiquitin ligase, Atrogin-1. In addition, it inhibited the upregulation of inflammation-associated cytokines in macrophages treated with lipopolysaccharide. In the animal model of sepsis, lithium chloride treatment improved body weight, increased muscle mass, preserved the survival of larger fibers, and decreased the expression of muscle-wasting effector genes. In a model of cancer cachexia, lithium chloride increased muscle mass, enhanced muscle strength, and increased fiber cross-sectional area, with no significant effect on tumor mass. These results indicate that lithium chloride exerts therapeutic effects on inflammation-mediated skeletal muscle wasting, such as sepsis-induced muscle atrophy and cancer cachexia.


Assuntos
Caquexia/prevenção & controle , Cloreto de Lítio/farmacologia , Músculo Esquelético/patologia , Atrofia Muscular/patologia , Neoplasias/tratamento farmacológico , Sepse/tratamento farmacológico , Sepse/prevenção & controle , Animais , Peso Corporal , Diferenciação Celular , Proliferação de Células , Meios de Cultivo Condicionados , Glicogênio Sintase Quinase 3 beta/biossíntese , Inflamação , Lipopolissacarídeos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Contração Muscular , Fibras Musculares Esqueléticas/efeitos dos fármacos , Proteínas Musculares/biossíntese , Músculo Esquelético/metabolismo , Neoplasias/complicações , Células RAW 264.7 , RNA Interferente Pequeno/metabolismo , Proteínas Ligases SKP Culina F-Box/biossíntese , Sais de Tetrazólio/farmacologia , Tiazóis/farmacologia
8.
Nano Lett ; 20(6): 4594-4602, 2020 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-32401528

RESUMO

Bioresorbable metals are quickly advancing in the field of regenerative medicine for their promises of tissue restoration without adverse consequences from their lifelong presence. Zn has recently risen to the top of bioresorbable metals with great potential as a medical implant. However, cell adhesion and colonization on the Zn substrate surface remains challenging, which could damper interfacial tissue-implant integration. Inspired by the fact that surface topography can regulate cell function and fate, we hypothesize that topography on bioresorbable Zn can dictate material biocompatibility, cell differentiation, and immunomodulation. To verify this, surface-engineered Zn plates with nano-, submicro-, and microtopographies were systematically investigated. The microscale topography exhibited increased adhesion, pronounced self-renewal, and enhanced osteogenic differentiation of bone cells as well as less macrophage inflammatory polarization, reduced platelet adhesion, and better hemocompatibility. Thus, surface topography could be a viable strategy to enhance bioresorbable Zn's biocompatibility and integration with surrounding tissues while reducing inflammation.


Assuntos
Implantes Absorvíveis , Osso e Ossos/citologia , Macrófagos/citologia , Osteogênese , Zinco , Animais , Adesão Celular , Diferenciação Celular , Linhagem Celular , Camundongos , Propriedades de Superfície , Titânio
10.
Sci Rep ; 10(1): 4967, 2020 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-32188912

RESUMO

Aging is associated with increased prevalence of skeletal and cardiac muscle disorders, such as sarcopenia and cardiac infarction. In this study, we constructed a compendium of purified ginsenoside compounds from Panax ginseng C.A. Meyer, which is a traditional Korean medicinal plant used to treat for muscle weakness. Skeletal muscle progenitor cell-based screening identified three compounds that enhance cell viability, of which 20(R)-ginsenoside Rh2 showed the most robust response. 20(R)-ginsenoside Rh2 increased viability in myoblasts and cardiomyocytes, but not fibroblasts or disease-related cells. The cellular mechanism was identified as downregulation of cyclin-dependent kinase inhibitor 1B (p27Kip1) via upregulation of Akt1/PKB phosphorylation at serine 473, with the orientation of the 20 carbon epimer being crucially important for biological activity. In zebrafish and mammalian models, 20(R)-ginsenoside Rh2 enhanced muscle cell proliferation and accelerated recovery from degeneration. Thus, we have identified 20(R)-ginsenoside Rh2 as a p27Kip1 inhibitor that may be developed as a natural therapeutic for muscle degeneration.


Assuntos
Ginsenosídeos/farmacologia , Músculo Esquelético/citologia , Infarto do Miocárdio/tratamento farmacológico , Miocárdio/citologia , Panax/química , Saponinas/química , Células-Tronco/metabolismo , Adulto , Animais , Sobrevivência Celular , Ginsenosídeos/química , Ensaios de Triagem em Larga Escala , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Miocárdio/metabolismo , Fosforilação , Ratos , Ratos Sprague-Dawley , Regeneração , Peixe-Zebra
11.
PLoS One ; 14(8): e0221721, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31449546

RESUMO

BACKGROUND: A20 protein has ubiquitin-editing activities and acts as a key regulator of inflammation and immunity. Previously, our group showed that A20 promotes tumor metastasis through multi-monoubiquitylation of SNAIL1 in basal-like breast cancer. Here, we investigated survival outcomes in patients with breast cancer according to A20 expression. PATIENTS AND METHODS: We retrospectively collected tumor samples from patients with breast cancer. Immunohistochemistry (IHC) with an A20-specific antibody was performed, and survival outcomes were analyzed. RESULTS: A20 expression was evaluated in 442 patients. High A20 expression was associated with advanced anatomical stage and young age. High A20 expression showed significantly inferior recurrence-free-survival and overall-survival (P<0.001 and P<0.001, respectively). Multivariate analysis showed that A20 was an independent prognostic marker for RFS (HRs: 2.324, 95% CIs: 1.446-3.736) and OS (HRs: 2.629, 95% CIs: 1.585-4.361). In human epidermal growth factor receptor 2 (HER2)-positive and triple negative breast cancer (TNBC) subtypes, high A20 levels were associated with poor OS. CONCLUSION: We found that A20 expression is a poor prognostic marker in breast cancer. The prognostic impact of A20 was pronounced in aggressive tumors, such as HER2-positive and TNBC subtypes. Our findings suggested that A20 may be a valuable target in patients with aggressive breast cancer.


Assuntos
Neoplasias da Mama/metabolismo , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Intervalos de Confiança , Intervalo Livre de Doença , Feminino , Humanos , Estimativa de Kaplan-Meier , Pessoa de Meia-Idade , Invasividade Neoplásica , Recidiva Local de Neoplasia/patologia , Prognóstico , Modelos de Riscos Proporcionais , Análise de Sobrevida , Adulto Jovem
12.
ACS Appl Mater Interfaces ; 11(27): 24349-24359, 2019 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-31141336

RESUMO

Fullerene (C60) and multilayer graphene hybrid devices were fabricated using electrophoretic deposition, where the C60 clusters are electrically charged upon the application of an external bias in a polar solvent, acetonitrile, mixed with toluene, which facilitates their deposition on the graphene membranes. Raman spectroscopy unveiled the unique vibrational fingerprints associated with the A2g mode of the C60 molecules at ∼1453 cm-1, while blue shifts of ∼6 and ∼17 cm-1 were also attributed to the G- and 2D-bands of the hybrids relative to bare graphene, suggestive of p-doped graphene. The intensity ratio of the G- and the 2D-bands I2D/IG (hybrid) dropped to ∼0.18 from ∼0.3 (bare graphene), and this reduction in I2D/IG is also a signature of hole-doped graphene, consistent with the relatively strong electron accepting nature of C60. The electronic conductance of the two-terminal hybrid devices increased relative to bare graphene at room temperature which was attributed to the increased carrier density, and temperature-dependent electronic transport measurements were also conducted from ambient down to ∼5.8 K. Additionally, a low energy shift in the Fermi level, EF ≈ 140 meV, was calculated for the hybrids. When the hybrid devices were irradiated with a broadband white light source and a tunable laser source (with a wavelength λ ranging from ∼400-1100 nm), a strong photoresponse was evident, in contrast to the bare graphene devices which appeared unresponsive. The responsivity R of the hybrids was measured to be ∼109 A/W at λ ≈ 400 nm and ∼298 K, while the detectivity and external quantum efficiency were also exceptional, ∼1015 jones and ∼109%, respectively, at ∼1 V and a light power density of ∼3 mW/cm2. The R values are ∼10 times higher compared to other hybrid devices derived from graphene reported previously, such as quantum dot-graphene and few-layer MoS2-graphene heterostructures. The strong photoresponse of the C60-graphene hybrids reported here is attributed to the doping enhancement arising in graphene upon the adsorption of C60. This work demonstrates the exceptional potential of such hybrid nanocarbon-based structures for optoelectronics.

13.
Artif Intell Med ; 94: 110-116, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30871677

RESUMO

INTRODUCTION: Visual field testing via standard automated perimetry (SAP) is a commonly used glaucoma diagnosis method. Applying machine learning techniques to the visual field test results, a valid clinical diagnosis of glaucoma solely based on the SAP data is provided. In order to reflect structural-functional patterns of glaucoma on the automated diagnostic models, we propose composite variables derived from anatomically grouped visual field clusters to improve the prediction performance. A set of machine learning-based diagnostic models are designed that implement different input data manipulation, dimensionality reduction, and classification methods. METHODS: Visual field testing data of 375 healthy and 257 glaucomatous eyes were used to build the diagnostic models. Three kinds of composite variables derived from the Garway-Heath map and the glaucoma hemifield test (GHT) sector map were included in the input variables in addition to the 52 SAP visual filed locations. Dimensionality reduction was conducted to select important variables so as to alleviate high-dimensionality problems. To validate the proposed methods, we applied four classifiers-linear discriminant analysis, naïve Bayes classifier, support vector machines, and artificial neural networks-and four dimensionality reduction methods-Pearson correlation coefficient-based variable selection, Markov blanket variable selection, the minimum redundancy maximum relevance algorithm, and principal component analysis- and compared their classification performances. RESULTS: For all tested combinations, the classification performance improved when the proposed composite variables and dimensionality reduction techniques were implemented. The combination of total deviation values, the GHT sector map, support vector machines, and Markov blanket variable selection obtains the best performance: an area under the receiver operating characteristic curve (AUC) of 0.912. CONCLUSION: A glaucoma diagnosis model giving an AUC of 0.912 was constructed by applying machine learning techniques to SAP data. The results show that dimensionality reduction not only reduces dimensions of the input space but also enhances the classification performance. The variable selection results show that the proposed composite variables from visual field clustering play a key role in the diagnosis model.


Assuntos
Glaucoma/diagnóstico , Aprendizado de Máquina , Testes de Campo Visual , Adulto , Automação , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
14.
Korean J Physiol Pharmacol ; 23(2): 121-130, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30820156

RESUMO

Glutamate toxicity-mediated mitochondrial dysfunction and neuronal cell death are involved in the pathogenesis of several neurodegenerative diseases as well as acute brain ischemia/stroke. In this study, we investigated the neuroprotective mechanism of dieckol (DEK), one of the phlorotannins isolated from the marine brown alga Ecklonia cava, against glutamate toxicity. Primary cortical neurons (100 µM, 24 h) and HT22 neurons (5 mM, 12 h) were stimulated with glutamate to induce glutamate toxic condition. The results demonstrated that DEK treatment significantly increased cell viability in a dose-dependent manner (1-50 µM) and recovered morphological deterioration in glutamate-stimulated neurons. In addition, DEK strongly attenuated intracellular reactive oxygen species (ROS) levels, mitochondrial overload of Ca2+ and ROS, mitochondrial membrane potential (ΔΨm) disruption, adenine triphosphate depletion. DEK showed free radical scavenging activity in the cell-free system. Furthermore, DEK enhanced protein expression of heme oxygenase-1 (HO-1), an important anti-oxidant enzyme, via the nuclear translocation of nuclear factor-like 2 (Nrf2). Taken together, we conclude that DEK exerts neuroprotective activities against glutamate toxicity through its direct free radical scavenging property and the Nrf-2/HO-1 pathway activation.

15.
Sci Rep ; 9(1): 493, 2019 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-30679508

RESUMO

Obesity is a medical condition that impacts on all levels of society and causes numerous comorbidities, such as diabetes, cardiovascular disease, and cancer. We assessed the suitability of targeting enolase, a glycolysis pathway enzyme with multiple, secondary functions in cells, to treat obesity. Treating adipocytes with ENOblock, a novel modulator of these secondary 'moonlighting' functions of enolase, suppressed the adipogenic program and induced mitochondrial uncoupling. Obese animals treated with ENOblock showed a reduction in body weight and increased core body temperature. Metabolic and inflammatory parameters were improved in the liver, adipose tissue and hippocampus. The mechanism of ENOblock was identified as transcriptional repression of master regulators of lipid homeostasis (Srebp-1a and Srebp-1c), gluconeogenesis (Pck-1) and inflammation (Tnf-α and Il-6). ENOblock treatment also reduced body weight gain, lowered cumulative food intake and increased fecal lipid content in mice fed a high fat diet. Our results support the further drug development of ENOblock as a therapeutic for obesity and suggest enolase as a new target for this disorder.


Assuntos
Benzamidas/farmacologia , Gorduras na Dieta/efeitos adversos , Ingestão de Alimentos/efeitos dos fármacos , Metabolismo dos Lipídeos/efeitos dos fármacos , Obesidade , Fosfopiruvato Hidratase/antagonistas & inibidores , Triazinas/farmacologia , Células 3T3-L1 , Animais , Peso Corporal/efeitos dos fármacos , Gorduras na Dieta/farmacologia , Modelos Animais de Doenças , Masculino , Camundongos , Obesidade/induzido quimicamente , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Obesidade/patologia , Fosfopiruvato Hidratase/metabolismo
16.
Stem Cells ; 37(3): 368-381, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30444564

RESUMO

Mesenchymal stem cells (MSCs) are multipotent cells that can differentiate into mature cells of various cell types. Although the differentiation process of MSCs requires lineage-specific transcription factors, the exact molecular mechanism that determines MSCs differentiation is not clearly addressed. Here, we demonstrate a Smad4-Taz axis as a new intrinsic regulator for adipo-osteogenic differentiation of MSCs and show that this function of Smad4 is independent of the transforming growth factor-ß signal. Smad4 directly bound to the Taz protein and facilitated nuclear localization of Taz through its nuclear localization signal. Nuclear retention of Taz by direct binding to Smad4 increased expression of osteogenic genes through enhancing Taz-runt-related transcription factor 2 (Runx2) interactions in the C3H10T1/2 MSC cell line and preosteoblastic MC3T3-E1 cells, whereas it suppressed expression of adipogenic genes through promoting Taz-peroxisome proliferator-activated receptor-γ (PPARγ) interaction in C3H10T1/2 and preadipogenic 3T3-L1 cells. A reciprocal role of the Smad4 in osteogenic and adipogenic differentiation was also observed in human adipose tissue-derived stem cells (hASCs). Consequently, Smad4 depletion in C3H10T1/2 and hASCs reduced nuclear retention of Taz and thus caused the decreased interaction with Runx2 or PPARγ, resulting in delayed osteogenesis or enhanced adipogenesis of the MSC. Therefore, these findings provide insight into a novel function of Smad4 to regulate the balance of MSC lineage commitment through reciprocal targeting of the Taz protein in osteogenic and adipogenic differentiation pathways. Stem Cells 2019;37:368-381.


Assuntos
Adipogenia , Células-Tronco Mesenquimais/metabolismo , Osteogênese , Transdução de Sinais , Proteína Smad4/metabolismo , Transativadores/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Animais , Diferenciação Celular , Linhagem Celular , Humanos , Células-Tronco Mesenquimais/citologia , Camundongos , Proteína Smad4/genética , Transativadores/genética , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional
17.
Korean J Physiol Pharmacol ; 22(3): 311-319, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29719453

RESUMO

Mitochondrial calcium overload is a crucial event in determining the fate of neuronal cell survival and death, implicated in pathogenesis of neurodegenerative diseases. One of the driving forces of calcium influx into mitochondria is mitochondria membrane potential (ΔΨm). Therefore, pharmacological manipulation of ΔΨm can be a promising strategy to prevent neuronal cell death against brain insults. Based on these issues, we investigated here whether nobiletin, a Citrus polymethoxylated flavone, prevents neurotoxic neuronal calcium overload and cell death via regulating basal ΔΨm against neuronal insult in primary cortical neurons and pure brain mitochondria isolated from rat cortices. Results demonstrated that nobiletin treatment significantly increased cell viability against glutamate toxicity (100 µM, 20 min) in primary cortical neurons. Real-time imaging-based fluorometry data reveal that nobiletin evokes partial mitochondrial depolarization in these neurons. Nobiletin markedly attenuated mitochondrial calcium overload and reactive oxygen species (ROS) generation in glutamate (100 µM)-stimulated cortical neurons and isolated pure mitochondria exposed to high concentration of Ca2+ (5 µM). Nobiletin-induced partial mitochondrial depolarization in intact neurons was confirmed in isolated brain mitochondria using a fluorescence microplate reader. Nobiletin effects on basal ΔΨm were completely abolished in K+-free medium on pure isolated mitochondria. Taken together, results demonstrate that K+ influx into mitochondria is critically involved in partial mitochondrial depolarization-related neuroprotective effect of nobiletin. Nobiletin-induced mitochondrial K+ influx is probably mediated, at least in part, by activation of mitochondrial K+ channels. However, further detailed studies should be conducted to determine exact molecular targets of nobiletin in mitochondria.

18.
ACS Appl Mater Interfaces ; 10(22): 18974-18983, 2018 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-29761694

RESUMO

We synthesized a novel fully conjugated block copolymer, P3, in which a wide-band gap donor block (P1) was connected to a narrow-band gap acceptor block (P2). As P3 contains P1 block with a wide bandgap and P2 block with a narrow bandgap, it exhibits a very wide complementary absorption. Transient photoluminescence measurement using P3 dilute solution demonstrated intramolecular charge transfer between the P1 block and the P2 block, which was not observed in a P1/P2 blend solution. A P3 thin film showed complete PL quenching because the photoinduced inter-/intramolecular charge transfer states were effectively formed. This phenomenon can play an important role in the photovoltaic properties of P3-based polymer solar cells. A single active material polymer solar cell (SAMPSC) fabricated from P3 alone exhibited a high power conversion efficiency (PCE) of 3.87% with a high open-circuit voltage of 0.93 V and a short-circuit current of 8.26 mA/cm2, demonstrating a much better performance than a binary P1-/P2-based polymer solar cell (PCE = 1.14%). This result facilitates the possible improvement of the photovoltaic performance of SAMPSCs by inducing favorable nanophase segregation between p- and n blocks. In addition, owing to the high morphological stability of the block copolymer, excellent shelf-life was observed in a P3-based SAMPSC compared with a P1/P2-based PSC.

19.
EMBO Rep ; 19(4)2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29487085

RESUMO

Autophagy begins with the formation of autophagosomes, a process that depends on the activity of the serine/threonine kinase ULK1 (hATG1). Although earlier studies indicated that ULK1 activity is regulated by dynamic polyubiquitination, the deubiquitinase involved in the regulation of ULK1 remained unknown. In this study, we demonstrate that ubiquitin-specific protease 20 (USP20) acts as a positive regulator of autophagy initiation through stabilizing ULK1. At basal state, USP20 binds to and stabilizes ULK1 by removing the ubiquitin moiety, thereby interfering with the lysosomal degradation of ULK1. The stabilization of basal ULK1 protein levels is required for the initiation of starvation-induced autophagy, since the depletion of USP20 by RNA interference inhibits LC3 puncta formation, a marker of autophagic flux. At later stages of autophagy, USP20 dissociates from ULK1, resulting in enhanced ULK1 degradation and apoptosis. Taken together, our findings provide the first evidence that USP20 plays a crucial role in autophagy initiation by maintaining the basal expression level of ULK1.


Assuntos
Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Autofagia , Ubiquitina Tiolesterase/metabolismo , Animais , Autofagia/genética , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/genética , Linhagem Celular , Sobrevivência Celular , Expressão Gênica , Células HEK293 , Humanos , Lisossomos/metabolismo , Camundongos , Ligação Proteica , Estabilidade Proteica , Proteólise , Interferência de RNA , RNA Interferente Pequeno/genética , Ubiquitina Tiolesterase/genética , Ubiquitinação
20.
Expert Opin Drug Discov ; 13(4): 307-326, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29421943

RESUMO

INTRODUCTION: Degenerative diseases, such as Alzheimer's disease, heart disease and arthritis cause great suffering and are major socioeconomic burdens. An attractive treatment approach is stem cell transplantation to regenerate damaged or destroyed tissues. However, this can be problematic. For example, donor cells may not functionally integrate into the host tissue. An alternative methodology is to deliver bioactive agents, such as small molecules, directly into the diseased tissue to enhance the regenerative potential of endogenous stem cells. Areas covered: In this review, the authors discuss the necessity of developing these small molecules to treat degenerative diseases and survey progress in their application as therapeutics. They describe both the successes and caveats of developing small molecules that target endogenous stem cells to induce tissue regeneration. This article is based on literature searches which encompass databases for biomedical research and clinical trials. These small molecules are also categorized per their target disease and mechanism of action. Expert opinion: The development of small molecules targeting endogenous stem cells is a high-profile research area. Some compounds have made the successful transition to the clinic. Novel approaches, such as modulating the stem cell niche or targeted delivery to disease sites, should increase the likelihood of future successes in this field.


Assuntos
Regeneração/fisiologia , Transplante de Células-Tronco/métodos , Células-Tronco/citologia , Doença de Alzheimer/fisiopatologia , Doença de Alzheimer/terapia , Animais , Artrite/fisiopatologia , Artrite/terapia , Desenho de Fármacos , Cardiopatias/fisiopatologia , Cardiopatias/terapia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...