Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Commun (Camb) ; 57(82): 10783-10786, 2021 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-34586119

RESUMO

Here we report a strategy for carbonyl addition with unactivated alkenes using an organic photocatalyst on both aldehyde and ketone substrates. This protocol grants us a good alternative to the traditional Barbier-Grignard allylation that exhibits poor functional group tolerance. With this method the stoichiometric use of metals can be avoided, high atom economy can be achieved and fewer by-products are generated.

2.
Org Biomol Chem ; 18(12): 2242-2251, 2020 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-32159571

RESUMO

An efficient palladium(ii) mediated C-glycosylation of glycals with diaryliodonium salts is described, providing a new strategy for the synthesis of 2,3-dideoxy C-aryl glycosides with excellent stereoselectivity. The C-glycosylation of a diverse range of glycals, including d-glucal, d-galactal, d-allal, l-rhamnal, l-fucal, l-arabinal, d-maltal, and d-lactal, occurred effectively and the corresponding C-glycosides were obtained in moderate to good yields. This protocol is commended as a significant addition to the field of carbohydrate chemistry due to the rich functional group compatibility, broad range of substrate scope and exceptional α-stereoselectivity.


Assuntos
Éteres Cíclicos/química , Glicosídeos/síntese química , Paládio/química , Catálise , Glicosídeos/química , Glicosilação , Polissacarídeos/química , Sais/química , Estereoisomerismo
3.
Chem Sci ; 12(6): 2209-2216, 2020 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-34163986

RESUMO

Herein, we devised a method for stereoselective O-glycosylation using an Ir(i)-catalyst which enables both hydroalkoxylation and nucleophilic substitution of glycals with varying substituents at the C3 position. In this transformation, 2-deoxy-α-O-glycosides were acquired when glycals equipped with a notoriously poor leaving group at C3 were used; in contrast 2,3-unsaturated-α-O-glycosides were produced from glycals that bear a good leaving group at C3. Mechanistic studies indicate that both reactions proceed via the directing mechanism, through which the acceptor coordinates to the Ir(i) metal in the α-face-coordinated Ir(i)-glycal π-complex and then attacks the glycal that contains the O-glycosidic bond in a syn-addition manner. This protocol exhibits good functional group tolerance and is exemplified with the preparation of a library of oligosaccharides in moderate to high yields and with excellent stereoselectivities.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA