Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 137
Filtrar
1.
Nano Lett ; 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38619226

RESUMO

Halide perovskite-based resistive switching memory (memristor) has potential in an artificial synapse. However, an abrupt switch behavior observed for a formamidinium lead triiodide (FAPbI3)-based memristor is undesirable for an artificial synapse. Here, we report on the δ-FAPbI3/atomic-layer-deposited (ALD)-SnO2 bilayer memristor for gradual analogue resistive switching. In comparison to a single-layer δ-FAPbI3 memristor, the heterojunction δ-FAPbI3/ALD-SnO2 bilayer effectively reduces the current level in the high-resistance state. The analog resistive switching characteristics of δ-FAPbI3/ALD-SnO2 demonstrate exceptional linearity and potentiation/depression performance, resembling an artificial synapse for neuromorphic computing. The nonlinearity of long-term potentiation and long-term depression is notably decreased from 12.26 to 0.60 and from -8.79 to -3.47, respectively. Moreover, the δ-FAPbI3/ALD-SnO2 bilayer achieves a recognition rate of ≤94.04% based on the modified National Institute of Standards and Technology database (MNIST), establishing its potential in an efficient artificial synapse.

2.
Adv Mater ; 36(14): e2307265, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38126918

RESUMO

Metal halide perovskite solar cells (PSCs) are infamous for their batch-to-batch and lab-to-lab irreproducibility in terms of stability and performance. Reproducible fabrication of PSCs is a critical requirement for market viability and practical commercialization. PSC irreproducibility plagues all levels of the community; from institutional research laboratories, start-up companies, to large established corporations. In this work, the critical function of atmospheric humidity to regulate the crystallization and stabilization of formamidinium lead triiodide (FAPbI3) perovskites is unraveled. It is demonstrated that the humidity content during processing induces profound variations in perovskite stoichiometry, thermodynamic stability, and optoelectronic quality. Almost counterintuitively, it is shown that the presence of humidity is perhaps indispensable to reproduce phase-stable and efficient FAPbI3-based PSCs.

3.
Nanotechnology ; 35(13)2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38100835

RESUMO

The importance of light management for perovskite solar cells (PSCs) has recently been emphasized because their power conversion efficiency approaches their theoretical thermodynamic limits. Among optical strategies, anti-reflection (AR) coating is the most widely used method to reduce reflectance loss and thus increase light-harvesting efficiency. Monolayer MgF2is a well-known AR material because of its optimal refractive index, simple fabrication process, and physical and chemical durabilities. Nevertheless, quantitative estimates of the improvement achieved by the MgF2AR layer are lacking. In this study, we conducted theoretical and experimental evaluations to assess the AR effect of MgF2on the performance of formamidinium lead-triiodide PSCs. A sinusoidal tendency to enhance the short-circuit current density (JSC) was observed depending on the thickness, which was attributed to the interference of the incident light. A transfer matrix method-based simulation was conducted to calculate the optical losses, demonstrating the critical impact of reflectance loss on theJSCimprovement. The predictedJSCs values, depending on the perovskite thickness and the incident angle, are also presented. The combined use of experimental and theoretical approaches offers notable advantages, including accurate interpretation of photocurrent generation, detailed optical analysis of the experimental results, and device performance predictions under unexplored conditions.

4.
ACS Omega ; 8(48): 45933-45941, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38075827

RESUMO

Petroleum coke, commonly known as pet-coke, represents a promising and cost-effective alternative fuel source, produced as a byproduct of large-scale heavy crude oil refining. This study first simulated the gasification process of pet-coke slurry using a three-dimensional computational fluid dynamics (CFD) approach based on the Eulerian-Lagrangian method. The simulation was carried out in a 2-ton-per-day (2TPD) entrained-flow gasifier, aiming to optimize the production of hydrogen (H2) and carbon monoxide (CO) as synthetic gases. This study investigated the effects of operational parameters, including the oxygen/slurry ratio and moisture content in the slurry, on various aspects such as fluid dynamics, temperature distribution, particle trajectories, carbon conversion, and gas composition within the pet-coke slurry gasifier. The base conditions of the simulation were meticulously cross-validated with high-precision experimental data. The results indicated that higher oxygen/slurry ratios led to increased concentrations of carbon dioxide (CO2) and decreased fractions of H2, primarily due to the prevalence of the reverse water-gas shift reaction. Moreover, raising the moisture content in the pet-coke slurry led to decreased CO levels and enhanced production of H2 and CO2, triggered by the activation of the forward water-gas shift reaction. These results underscore the potential of pet-coke slurry as a favorable feedstock for syngas production and the achievement of carbon neutrality through the careful optimization of operational conditions. Our findings provide valuable insights for further experimental exploration and the development of practical applications for pet-coke gasification.

5.
Artigo em Inglês | MEDLINE | ID: mdl-38031845

RESUMO

Sn-based perovskite light-emitting diodes (PeLEDs) have emerged as promising alternatives to Pb-based PeLEDs with their rapid increase in performance owing to the various research studies on inhibiting Sn oxidation. However, the absence of defect passivation strategies for Sn-based perovskite LEDs necessitates further research in this field. We performed systematic studies to investigate the design rules for defect passivation agents for Sn-based perovskites by incorporating alkali/multivalent metal salts with various cations and anions. From the computational and experimental analyses, sodium trifluoromethanesulfonate (NaTFMS) was found to be the most effective passivation agent for PEA2SnI4 films among the explored candidate agents owing to favorable reaction energetics to passivate iodide Frenkel defects. Consequently, the incorporation of NaTFMS facilitates the formation of uniform films with relatively large crystals and reduced Sn4+. The NaTFMS-containing PEA2SnI4 PeLEDs demonstrate an improved luminance of 138.9 cd/m2 and external quantum efficiency (EQE) of 0.39% with an improved half-lifetime of more than threefold. This work provides important insight into the design of defect passivation agents for Sn-based perovskites.

6.
Medicine (Baltimore) ; 102(43): e35778, 2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37904387

RESUMO

RATIONALE: Colonic mucosa-associated lymphoid tissue (MALT) lymphoma is an unusual subtype comprising only 2.5% of all MALT lymphomas. Most cases of colonic MALT lymphoma are diagnosed at an early stage. Therefore, the clinical features of advanced-stage colonic MALT lymphoma have seldom been reported, and the endoscopic findings are not well established. In this study, we report the clinical and endoscopic characteristics of stage IV colonic MALT lymphoma and highlight the importance of repeat biopsy to figure out this rare disease. PATIENT CONCERNS: The patient was a 68-year-old male complaining of hematochezia and lower left quadrant abdominal pain for the past 3 days. DIAGNOSES: The patient had 3 masses and friable mucosal lesions in the colon. With the first colonoscopy and biopsy, he was initially diagnosed as having eosinophilic colitis. However, the first treatment with steroids did not show any response. Because of atypical clinical features and colonoscopic findings, a second colonoscopy and a repeat biopsy were performed, and the results were consistent with colonic MALT lymphoma arising in the colon. The patient was finally diagnosed with stage IV colonic MALT lymphoma accompanied by multiple distant metastases. INTERVENTIONS AND OUTCOMES: The patient started to receive chemotherapy with a combination regimen of cyclophosphamide, vincristine, and prednisolone. The follow-up study after 3 months showed stable disease status based on response evaluation criteria in solid tumors. LESSONS: This case report presents atypical clinical characteristics and colonoscopic findings of stage IV colonic MALT lymphoma. Clinical suspicion and repeat biopsy should be considered to diagnose this rare and diagnostically challenging cancer.


Assuntos
Abscesso Abdominal , Neoplasias Pulmonares , Linfoma de Zona Marginal Tipo Células B , Masculino , Humanos , Idoso , Linfoma de Zona Marginal Tipo Células B/complicações , Linfoma de Zona Marginal Tipo Células B/diagnóstico , Linfoma de Zona Marginal Tipo Células B/tratamento farmacológico , Seguimentos , Colo/patologia , Neoplasias Pulmonares/complicações , Abscesso Abdominal/complicações
7.
Clin Lab ; 69(10)2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37844041

RESUMO

BACKGROUND: The Helicobacter pylori eradication rate with standard triple therapy (STT) is continuously decreasing due to clarithromycin resistance. This study aimed to investigate the eradication rate of empirical and tailored therapy and explore various factors affecting this eradication rate using clarithromycin resistance test data for the last 4 years at a single institution in Daegu. METHODS: From August 2018 to July 2021, a total of 1,395 patients diagnosed with H. pylori infection based on rapid urea testing and histology at Keimyung University Dongsan Hospital were retrospectively examined. Participants were classified into the empirical and tailored therapy groups according to the results of the clarithromycin resistance test using the polymerase chain reaction. RESULTS: The overall eradication rate of empirical STT was 72.8%, and the eradication rate by year was 71.6% in 2018, 77.4% in 2019, 70.3% in 2020, and 70.6% in 2021; the differences were not statistically significant (p = 0.173). No significant difference was noted in the eradication rate according to gender, age, type of proton pump inhibitors, and use of probiotics. Significant differences were noted in the eradication rate according to the treat-ment period: 69.7% in the 7-day, 67.3% in the 10-day, and 81.4% in the 14-day group (p = 0.001). The eradication rate with STT was 87.4% in the non-resistant group. In the case of clarithromycin resistance, treatment was mainly with bismuth quadruple therapy (BQT), and the eradication rate was 86.1%. The eradication rate was higher with administration of BQT for 10 days or 14 days than for administration of BQT for 7 days, but with no statistical significance (p = 0.364). CONCLUSIONS: Extending the treatment period of STT helped in improving the eradication rate, and tailored therapy through clarithromycin resistance testing showed superior results when compared to empirical therapy.


Assuntos
Infecções por Helicobacter , Helicobacter pylori , Humanos , Claritromicina/uso terapêutico , Claritromicina/farmacologia , Antibacterianos/uso terapêutico , Estudos Retrospectivos , Quimioterapia Combinada , Infecções por Helicobacter/diagnóstico , Infecções por Helicobacter/tratamento farmacológico , Bismuto/uso terapêutico , Resultado do Tratamento
8.
Artigo em Inglês | MEDLINE | ID: mdl-37681842

RESUMO

We examined the association between variation in COVID-19 deaths and spatial differences in the racial, ethnic, and nativity-status composition of New York City neighborhoods, which has received little scholarly attention. Using COVID-19 mortality data (through 31 May 2021) and socioeconomic and demographic data from the American Community Survey at the Zip Code Tabulation Area level as well as United-Hospital-Fund-level neighborhood data from the Community Health Survey of the New York City Department of Health and Mental Hygiene, we employed multivariable Poisson generalized estimating equation models and assessed the association between COVID-19 mortality, racial/ethnic/nativity-status composition, and other ecological factors. Our results showed an association between neighborhood-level racial and ethnic composition and COVID-19 mortality rates that is contingent upon the neighborhood-level nativity-status composition. After multivariable adjustment, ZCTAs with large shares of native-born Blacks and foreign-born Hispanics and Asians were more likely to have higher COVID-19 mortality rates than areas with large shares of native-born Whites. Areas with more older adults and essential workers, higher levels of household crowding, and population with diabetes were also at high risk. Small-area analyses of COVID-19 mortality can inform health policy responses to neighborhood inequalities on the basis of race, ethnicity, and immigration status.


Assuntos
COVID-19 , Etnicidade , Humanos , Idoso , Aglomeração , Cidade de Nova Iorque/epidemiologia , Características da Família
9.
Res Sq ; 2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37503119

RESUMO

The Encyclopedia of DNA elements (ENCODE) project is a collaborative effort to create a comprehensive catalog of functional elements in the human genome. The current database comprises more than 19000 functional genomics experiments across more than 1000 cell lines and tissues using a wide array of experimental techniques to study the chromatin structure, regulatory and transcriptional landscape of the Homo sapiens and Mus musculus genomes. All experimental data, metadata, and associated computational analyses created by the ENCODE consortium are submitted to the Data Coordination Center (DCC) for validation, tracking, storage, and distribution to community resources and the scientific community. The ENCODE project has engineered and distributed uniform processing pipelines in order to promote data provenance and reproducibility as well as allow interoperability between genomic resources and other consortia. All data files, reference genome versions, software versions, and parameters used by the pipelines are captured and available via the ENCODE Portal. The pipeline code, developed using Docker and Workflow Description Language (WDL; https://openwdl.org/) is publicly available in GitHub, with images available on Dockerhub (https://hub.docker.com), enabling access to a diverse range of biomedical researchers. ENCODE pipelines maintained and used by the DCC can be installed to run on personal computers, local HPC clusters, or in cloud computing environments via Cromwell. Access to the pipelines and data via the cloud allows small labs the ability to use the data or software without access to institutional compute clusters. Standardization of the computational methodologies for analysis and quality control leads to comparable results from different ENCODE collections - a prerequisite for successful integrative analyses.

10.
Sensors (Basel) ; 23(10)2023 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-37430628

RESUMO

The implementation of an energy storage system (ESS) as a container-type package is common due to its ease of installation, management, and safety. The control of the operating environment of an ESS mainly considers the temperature rise due to the heat generated through the battery operation. However, the relative humidity of the container often increases by over 75% in many cases because of the operation of the air conditioner which pursues temperature-first control. Humidity is a major factor which can cause safety issues such as fires owing to insulation breakdown caused by condensation. However, the importance of humidity control in ESS is underestimated compared to temperature control. In this study, temperature and humidity monitoring and management issues were addressed for a container-type ESS by building sensor-based monitoring and control systems. Furthermore, a rule-based air conditioner control algorithm was proposed for temperature and humidity management. A case study was conducted to compare the conventional and proposed control algorithms and verify the feasibility of the proposed algorithm. The results showed that the proposed algorithm reduced the average humidity by 11.4% compared to the value achieved with the existing temperature control method while also maintaining the temperature.

11.
Nanomicro Lett ; 15(1): 184, 2023 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-37462884

RESUMO

In recent years, metal halide perovskites have received significant attention as materials for next-generation optoelectronic devices owing to their excellent optoelectronic properties. The unprecedented rapid evolution in the device performance has been achieved by gaining an advanced understanding of the composition, crystal growth, and defect engineering of perovskites. As device performances approach their theoretical limits, effective optical management becomes essential for achieving higher efficiency. In this review, we discuss the status and perspectives of nano to micron-scale patterning methods for the optical management of perovskite optoelectronic devices. We initially discuss the importance of effective light harvesting and light outcoupling via optical management. Subsequently, the recent progress in various patterning/texturing techniques applied to perovskite optoelectronic devices is summarized by categorizing them into top-down and bottom-up methods. Finally, we discuss the perspectives of advanced patterning/texturing technologies for the development and commercialization of perovskite optoelectronic devices.

12.
Adv Mater ; 35(45): e2304168, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37463679

RESUMO

Chemical bath deposition (CBD) is widely used to deposit tin oxide (SnOx ) as an electron-transport layer in perovskite solar cells (PSCs). The conventional recipe uses thioglycolic acid (TGA) to facilitate attachments of SnOx particles onto the substrate. However, nonvolatile TGA is reported to harm the operational stability of PSCs. In this work, a volatile oxalic acid (OA) is introduced as an alternative to TGA. OA, a dicarboxylic acid, functions as a chemical linker for the nucleation and attachment of particles to the substrate in the chemical bath. Moreover, OA can be readily removed through thermal annealing followed by a mild H2 O2 treatment, as shown by FTIR measurements. Synergistically, the mild H2 O2 treatment selectively oxidizes the surface of the SnOx layer, minimizing nonradiative interface carrier recombination. EELS (electron-energy-loss spectroscopy) confirms that the SnOx surface is dominated by Sn4+ , while the bulk is a mixture of Sn2+ and Sn4+ . This rational design of a CBD SnOx layer leads to devices with T85 ≈1500 h, a significant improvement over the TGA-based device with T80 ≈250 h. The champion device reached a power conversion efficiency of 24.6%. This work offers a rationale for optimizing the complex parameter space of CBD SnOx to achieve efficient and stable PSCs.

13.
Nature ; 617(7962): 687-695, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37225881

RESUMO

Lead halide perovskites are promising semiconducting materials for solar energy harvesting. However, the presence of heavy-metal lead ions is problematic when considering potential harmful leakage into the environment from broken cells and also from a public acceptance point of view. Moreover, strict legislation on the use of lead around the world has driven innovation in the development of strategies for recycling end-of-life products by means of environmentally friendly and cost-effective routes. Lead immobilization is a strategy to transform water-soluble lead ions into insoluble, nonbioavailable and nontransportable forms over large pH and temperature ranges and to suppress lead leakage if the devices are damaged. An ideal methodology should ensure sufficient lead-chelating capability without substantially influencing the device performance, production cost and recycling. Here we analyse chemical approaches to immobilize Pb2+ from perovskite solar cells, such as grain isolation, lead complexation, structure integration and adsorption of leaked lead, based on their feasibility to suppress lead leakage to a minimal level. We highlight the need for a standard lead-leakage test and related mathematical model to be established for the reliable evaluation of the potential environmental risk of perovskite optoelectronics.

14.
J Yeungnam Med Sci ; 40(4): 388-393, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37005500

RESUMO

BACKGROUND: Differentiating between bacterial and nonbacterial colitis remains a challenge. We aimed to evaluate the value of serum procalcitonin (PCT) and C-reactive protein (CRP) in differentiating between bacterial and nonbacterial colitis. METHODS: Adult patients with three or more episodes of watery diarrhea and colitis symptoms within 14 days of a hospital visit were eligible for this study. The patients' stool pathogen polymerase chain reaction (PCR) testing results, serum PCT levels, and serum CRP levels were analyzed retrospectively. Patients were divided into bacterial and nonbacterial colitis groups according to their PCR. The laboratory data were compared between the two groups. The area under the receiver operating characteristic curve (AUC) was used to evaluate diagnostic accuracy. RESULTS: In total, 636 patients were included; 186 in the bacterial colitis group and 450 in the nonbacterial colitis group. In the bacterial colitis group, Clostridium perfringens was the commonest pathogen (n=70), followed by Clostridium difficile toxin B (n=60). The AUC for PCT and CRP was 0.557 and 0.567, respectively, indicating poor discrimination. The sensitivity and specificity for diagnosing bacterial colitis were 54.8% and 52.6% for PCT, and 52.2% and 54.2% for CRP, respectively. Combining PCT and CRP measurements did not increase the discrimination performance (AUC, 0.522; 95% confidence interval, 0.474-0.571). CONCLUSION: Neither PCT nor CRP helped discriminate bacterial colitis from nonbacterial colitis.

15.
Exp Mol Med ; 55(5): 910-925, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37121975

RESUMO

Insulin resistance is a major contributor to the pathogenesis of several human diseases, including type 2 diabetes, hypertension, and hyperlipidemia. Notably, insulin resistance and hypertension share common abnormalities, including increased oxidative stress, inflammation, and organelle dysfunction. Recently, we showed that excess intracellular Ca2+, a known pathogenic factor in hypertension, acts as a critical negative regulator of insulin signaling by forming Ca2+-phosphoinositides that prevent the membrane localization of AKT, a key serine/threonine kinase signaling molecule. Whether preventing intracellular Ca2+ overload improves insulin sensitivity, however, has not yet been investigated. Here, we show that the antihypertensive agent candesartan, compared with other angiotensin-II receptor blockers, has previously unrecognized beneficial effects on attenuating insulin resistance. We found that candesartan markedly reduced palmitic acid (PA)-induced intracellular Ca2+ overload and lipid accumulation by normalizing dysregulated store-operated channel (SOC)-mediated Ca2+ entry into cells, which alleviated PA-induced insulin resistance by promoting insulin-stimulated AKT membrane localization and increased the phosphorylation of AKT and its downstream substrates. As pharmacological approaches to attenuate intracellular Ca2+ overload in vivo, administering candesartan to obese mice successfully decreased insulin resistance, hepatic steatosis, dyslipidemia, and tissue inflammation by inhibiting dysregulated SOC-mediated Ca2+ entry and ectopic lipid accumulation. The resulting alterations in the phosphorylation of key signaling molecules consequently alleviate impaired insulin signaling by increasing the postprandial membrane localization and phosphorylation of AKT. Thus, our findings provide robust evidence for the pleiotropic contribution of intracellular Ca2+ overload in the pathogenesis of insulin resistance and suggest that there are viable approved drugs that can be repurposed for the treatment of insulin resistance and hypertension.


Assuntos
Diabetes Mellitus Tipo 2 , Hipertensão , Resistência à Insulina , Camundongos , Animais , Humanos , Resistência à Insulina/fisiologia , Cálcio , Proteínas Proto-Oncogênicas c-akt , Antagonistas de Receptores de Angiotensina/uso terapêutico , Hipertensão/tratamento farmacológico , Insulina , Inflamação , Angiotensinas/uso terapêutico , Lipídeos
16.
Clin Endosc ; 55(6): 767-774, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36464826

RESUMO

BACKGROUND/AIMS: Few studies have compared the performances of endoscopic knives. This study aimed to compare the therapeutic outcomes of a novel core knife and the conventional IT knife 2 for endoscopic submucosal dissection (ESD) of gastric mucosal lesions. METHODS: This prospective, non-inferiority trial included patients diagnosed with gastric adenoma or early-stage adenocarcinoma at Keimyung University Dongsan Hospital between June and November 2020. The patients were randomly assigned to either the core knife or the IT knife 2 group. The operators and assistants scored the knives' grip convenience and cutting abilities. RESULTS: A total of 39 patients were enrolled (core knife group, 20 patients; IT knife 2 group, 19 patients). There were no significant between-group differences in operator-assessed grip convenience (9.600 vs. 9.526, p=0.753), cutting ability (9.600 vs. 9.105, p=0.158), or assistant-assessed grip convenience (9.500 vs. 9.368, p=0.574). CONCLUSION: The core knife achieved therapeutic outcomes that were comparable to those of the IT knife 2 for ESD of gastric mucosal lesions.

17.
Nat Mater ; 21(12): 1396-1402, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36396958

RESUMO

Cations with suitable sizes to occupy an interstitial site of perovskite crystals have been widely used to inhibit ion migration and promote the performance and stability of perovskite optoelectronics. However, such interstitial doping inevitably leads to lattice microstrain that impairs the long-range ordering and stability of the crystals, causing a sacrificial trade-off. Here, we unravel the evident influence of the valence states of the interstitial cations on their efficacy to suppress the ion migration. Incorporation of a trivalent neodymium cation (Nd3+) effectively mitigates the ion migration in the perovskite lattice with a reduced dosage (0.08%) compared to a widely used monovalent cation dopant (Na+, 0.45%). The photovoltaic performances and operational stability of the prototypical perovskite solar cells are enhanced with a trace amount of Nd3+ doping while minimizing the sacrificial trade-off.

19.
Adv Sci (Weinh) ; 9(14): e2200168, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35307991

RESUMO

For valence change memory (VCM)-type synapses, a large number of vacancies help to achieve very linearly changed dynamic range, and also, the low activation energy of vacancies enables low-voltage operation. However, a large number of vacancies increases the current of artificial synapses by acting like dopants, which aggravates low-energy operation and device scalability. Here, mixed-dimensional formamidinium bismuth iodides featuring in-situ formed type-I band structure are reported for the VCM-type synapse. As compared to the pure 2D and 0D phases, the mixed phase increases defect density, which induces a better dynamic range and higher linearity. In addition, the mixed phase decreases conductivity for non-paths despite a large number of defects providing lots of conducting paths. Thus, the mixed phase-based memristor devices exhibit excellent potentiation/depression characteristics with asymmetricity of 3.15, 500 conductance states, a dynamic range of 15, pico ampere-scale current level, and energy consumption per spike of 61.08 aJ. A convolutional neural network (CNN) simulation with the Canadian Institute for Advanced Research-10 (CIFAR-10) dataset is also performed, confirming a maximum recognition rate of approximately 87%. This study is expected to lay the groundwork for future research on organic bismuth halide-based memristor synapses usable for a neuromorphic computing system.


Assuntos
Bismuto , Iodetos , Amidinas , Canadá , Redes Neurais de Computação
20.
Nature ; 605(7909): 268-273, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35292753

RESUMO

Optoelectronic devices consist of heterointerfaces formed between dissimilar semiconducting materials. The relative energy-level alignment between contacting semiconductors determinately affects the heterointerface charge injection and extraction dynamics. For perovskite solar cells (PSCs), the heterointerface between the top perovskite surface and a charge-transporting material is often treated for defect passivation1-4 to improve the PSC stability and performance. However, such surface treatments can also affect the heterointerface energetics1. Here we show that surface treatments may induce a negative work function shift (that is, more n-type), which activates halide migration to aggravate PSC instability. Therefore, despite the beneficial effects of surface passivation, this detrimental side effect limits the maximum stability improvement attainable for PSCs treated in this way. This trade-off between the beneficial and detrimental effects should guide further work on improving PSC stability via surface treatments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...