Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Med Phys ; 50(11): 7139-7153, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37756652

RESUMO

BACKGROUND: Quality assurance (QA) is a prerequisite for safe and accurate pencil-beam proton therapy. Conventional measurement-based patient-specific QA (pQA) can only verify limited aspects of patient treatment and is labor-intensive. Thus, a better method is needed to ensure the integrity of the treatment plan. PURPOSE: Line scanning, which involves continuous and rapid delivery of pencil beams, is a state-of-the-art proton therapy technique. Machine performance in delivering scanning protons is dependent on the complexity of the beam modulations. Moreover, it contributes to patient treatment accuracy. A Monte Carlo (MC) simulation-based QA method that reflects the uncertainty related to the machine during scanning beam delivery was developed and verified for clinical applications to pQA. METHODS: Herein, a tool for particle simulation (TOPAS) for nozzle modeling was used, and the code was commissioned against the measurements. To acquire the beam delivery uncertainty for each plan, patient plans were delivered. Furthermore, log files recorded every 60 µs by the monitors downstream of the nozzle were exported from the treatment control system. The spot positions and monitor unit (MU) counts in the log files were converted to dipole magnet strengths and number of particles, respectively, and entered into the TOPAS. For the 68 clinical cases, MC simulations were performed in a solid water phantom, and two-dimensional (2D) absolute dose distributions at 20-mm depth were measured using an ionization chamber array (Octavius 1500, PTW, Freiburg, Germany). Consequently, the MC-simulated 2D dose distributions were compared with the measured data, and the dose distributions in the pre-treatment QA plan created with RayStation (RaySearch Laboratories, Stockholm, Sweden). Absolute dose comparisons were made using gamma analysis with 3%/3 mm and 2%/2 mm criteria for 47 clinical cases without considering daily machine output variation in the MC simulation and 21 cases with daily output variation, respectively. All cases were analyzed with 90% or 95% of passing rate thresholds. RESULTS: For 47 clinical cases not considering daily output variations, the absolute gamma passing rates compared with the pre-treatment QA plan were 99.71% and 96.97%, and the standard deviations (SD) were 0.70% and 3.78% with the 3%/3 mm or 2%/2 mm criteria, respectively. Compared with the measurements, the passing rate of 2%/2 mm gamma criterion was 96.76% with 3.99% of SD. For the 21 clinical cases compared with pre-treatment QA plan data and measurements considering daily output variations, the 2%/2 mm absolute gamma analysis result was 98.52% with 1.43% of SD and 97.67% with 2.72% of SD, respectively. With a 95% passing rate threshold of 2%/2 mm criterion, the false-positive and false-negative were 21.8% and 8.3% for without and with considering output variation, respectively. With a 90% threshold, the false-positive and false-negative reduced to 11.4% and 0% for without and with considering output variation, respectively. CONCLUSIONS: A log-file-based MC simulation method for patient QA of line-scanning proton therapy was successfully developed. The proposed method exhibited clinically acceptable accuracy, thereby exhibiting a potential to replace the measurement-based dosimetry QA method with a 90% gamma passing rate threshold when applying the 2%/2 mm criterion.


Assuntos
Terapia com Prótons , Prótons , Humanos , Terapia com Prótons/métodos , Método de Monte Carlo , Planejamento da Radioterapia Assistida por Computador/métodos , Dosagem Radioterapêutica
2.
PLoS One ; 16(2): e0246742, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33577602

RESUMO

PURPOSE: We developed a compact and lightweight time-resolved mirrorless scintillation detector (TRMLSD) employing image processing techniques and a convolutional neural network (CNN) for high-resolution two-dimensional (2D) dosimetry. METHODS: The TRMLSD comprises a camera and an inorganic scintillator plate without a mirror. The camera was installed at a certain angle from the horizontal plane to collect scintillation from the scintillator plate. The geometric distortion due to the absence of a mirror and camera lens was corrected using a projective transform. Variations in brightness due to the distance between the image sensor and each point on the scintillator plate and the inhomogeneity of the material constituting the scintillator were corrected using a 20.0 × 20.0 cm2 radiation field. Hot pixels were removed using a frame-based noise-reduction technique. Finally, a CNN-based 2D dose distribution deconvolution model was applied to compensate for the dose error in the penumbra region and a lack of backscatter. The linearity, reproducibility, dose rate dependency, and dose profile were tested for a 6 MV X-ray beam to verify dosimeter characteristics. Gamma analysis was performed for two simple and 10 clinical intensity-modulated radiation therapy (IMRT) plans. RESULTS: The dose linearity with brightness ranging from 0.0 cGy to 200.0 cGy was 0.9998 (R-squared value), and the root-mean-square error value was 1.010. For five consecutive measurements, the reproducibility was within 3% error, and the dose rate dependency was within 1%. The depth dose distribution and lateral dose profile coincided with the ionization chamber data with a 1% mean error. In 2D dosimetry for IMRT plans, the mean gamma passing rates with a 3%/3 mm gamma criterion for the two simple and ten clinical IMRT plans were 96.77% and 95.75%, respectively. CONCLUSION: The verified accuracy and time-resolved characteristics of the dosimeter may be useful for the quality assurance of machines and patient-specific quality assurance for clinical step-and-shoot IMRT plans.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Radiometria/instrumentação , Radiometria/métodos , Radioterapia de Intensidade Modulada/métodos , Contagem de Cintilação/instrumentação , Contagem de Cintilação/métodos , Câmaras gama , Humanos , Redes Neurais de Computação , Dosagem Radioterapêutica , Reprodutibilidade dos Testes , Raios X
3.
Med Phys ; 46(12): 5833-5847, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31621917

RESUMO

PURPOSE: The purpose of this study was to investigate the feasibility of two-dimensional (2D) dose distribution deconvolution using convolutional neural networks (CNNs) instead of an analytical approach for an in-house scintillation detector that has a detector-interface artifact in the penumbra region. METHODS: Datasets of 2D dose distributions were acquired from a medical linear accelerator of Novalis Tx. The datasets comprise two different sizes of square radiation fields and 13 clinical intensity-modulated radiation treatment (IMRT) plans. These datasets were divided into two datasets (training and test) to train and validate the developed network, called PenumbraNet, which is a shallow linear CNN. The PenumbraNet was trained to transform the measured dose distribution [M(x, y)] to calculated distribution [D(x, y)] by the treatment planning system. After training of the PenumbraNet was completed, the performance was evaluated using test data, which were 10 × 10 cm2 open field and ten clinical IMRT cases. The corrected dose distribution [C(x, y)] was evaluated against D(x, y) with 2%/2 mm and 3%/3 mm criteria of the gamma index for each field. The M(x, y) and deconvolved dose distribution with the analytically obtained kernel using Wiener filtering [A(x, y)] were also evaluated for comparison. In addition, we compared the performance of the shallow depth of linear PenumbraNet with that of nonlinear PenumbraNet and a deep nonlinear PenumbraNet within the same training epoch. RESULTS: The mean gamma passing rates were 84.77% and 95.81% with 3%/3 mm gamma criteria for A(x, y) and C(x, y) of the PenumbraNet, respectively. The mean gamma pass rates of nonlinear PenumbraNet and the deep depth of nonlinear PenumbraNet were 96.62%, 93.42% with 3%/3 mm gamma criteria, respectively. CONCLUSIONS: We demonstrated the feasibility of the PenumbraNets for 2D dose distribution deconvolution. The nonlinear PenumbraNet which has the best performance improved the gamma passing rate by 11.85% from the M(x, y) at 3%/3 mm gamma criteria.


Assuntos
Redes Neurais de Computação , Doses de Radiação , Planejamento da Radioterapia Assistida por Computador/métodos , Estudos de Viabilidade , Humanos , Radiometria , Dosagem Radioterapêutica , Radioterapia de Intensidade Modulada
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA