Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancer Immunol Res ; 11(9): 1168-1183, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37307577

RESUMO

Exercise changes the tumor microenvironment by remodeling blood vessels and increasing infiltration by cytotoxic immune cells. The mechanisms driving these changes remain unclear. Herein, we demonstrate that exercise normalizes tumor vasculature and upregulates endothelial expression of VCAM1 in YUMMER 1.7 and B16F10 murine models of melanoma but differentially regulates tumor growth, hypoxia, and the immune response. We found that exercise suppressed tumor growth and increased CD8+ T-cell infiltration in YUMMER but not in B16F10 tumors. Single-cell RNA sequencing and flow cytometry revealed exercise modulated the number and phenotype of tumor-infiltrating CD8+ T cells and myeloid cells. Specifically, exercise caused a phenotypic shift in the tumor-associated macrophage population and increased the expression of MHC class II transcripts. We further demonstrated that ERK5 S496A knock-in mice, which are phosphorylation deficient at the S496 residue, "mimicked" the exercise effect when unexercised, yet when exercised, these mice displayed a reversal in the effect of exercise on tumor growth and macrophage polarization compared with wild-type mice. Taken together, our results reveal tumor-specific differences in the immune response to exercise and show that ERK5 signaling via the S496 residue plays a crucial role in exercise-induced tumor microenvironment changes. See related Spotlight by Betof Warner, p. 1158.


Assuntos
Melanoma , Proteína Quinase 7 Ativada por Mitógeno , Animais , Camundongos , Linfócitos T CD8-Positivos , Melanoma/genética , Fenótipo , Fosforilação , Microambiente Tumoral
2.
Cancers (Basel) ; 14(17)2022 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-36077841

RESUMO

Ceramides are essential sphingolipids that mediate cell death and survival. Low ceramide content in melanoma is one mechanism of drug resistance. Thus, increasing the ceramide content in tumor cells is likely to increase their sensitivity to cytotoxic therapy. Aerobic exercise has been shown to modulate ceramide metabolism in healthy tissue, but the relationship between exercise and ceramide in tumors has not been evaluated. Here, we demonstrate that aerobic exercise causes tumor cell apoptosis and accumulation of pro-apoptotic ceramides in B16F10 but not BP melanoma models using mice. B16F10 tumor-bearing mice were treated with two weeks of moderate treadmill exercise, or were control, unexercised mice. A reverse-phase protein array was used to identify canonical p53 apoptotic signaling as a key pathway upregulated by exercise, and we demonstrate increased apoptosis in tumors from exercised mice. Consistent with this finding, pro-apoptotic C16-ceramide, and the ceramide generating enzyme ceramide synthase 6 (CerS6), were higher in B16F10 tumors from exercised mice, while pro-survival sphingosine kinase 1 (Sphk1) was lower. These data suggest that exercise contributes to B16F10 tumor cell death, possibly by modulating ceramide metabolism toward a pro-apoptotic ceramide/sphingosine-1-phosphate balance. However, these results are not consistent in BP tumors, demonstrating that exercise can have different effects on tumors of different patient or mouse origin with the same diagnosis. This work indicates that exercise might be most effective as a therapeutic adjuvant with therapies that kill tumor cells in a ceramide-dependent manner.

3.
Sci Rep ; 11(1): 15449, 2021 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-34326395

RESUMO

Endoplasmic reticulum (ER) stress and uncoupling protein-2 (UCP2) activation are opposing modulators of endothelial dysfunction in atherosclerosis. Exercise reduces atherosclerosis plaques and enhances endothelial function. Our aim was to understand how exercise affects ER stress and UCP2 activation, and how that relates to endothelial dysfunction in an atherosclerotic murine model. Wild type (C57BL/6, WT) and apolipoprotein-E-knockout (ApoEtm1Unc, ApoE KO) mice underwent treadmill exercise training (EX) or remained sedentary for 12 weeks. Acetylcholine (ACh)-induced endothelium-dependent vasodilation was determined in the presence of an eNOS inhibitor (L-NAME), UCP2 inhibitor (genipin), and ER stress inducer (tunicamycin). UCP2, ER stress markers and NLRP3 inflammasome signaling were quantified by western blotting. p67phox and superoxide were visualized using immunofluorescence and DHE staining. Nitric oxide (NO) was measured by nitrate/nitrite assay. ACh-induced vasodilation was attenuated in coronary arterioles of ApoE KO mice but improved in ApoE KO-EX mice. Treatment of coronary arterioles with L-NAME, tunicamycin, and genipin significantly attenuated ACh-induced vasodilation in all mice except for ApoE KO mice. Exercise reduced expression of ER stress proteins, TXNIP/NLRP3 inflammasome signaling cascades, and Bax expression in the heart of ApoE KO-EX mice. Further, exercise diminished superoxide production and NADPH oxidase p67phox expression in coronary arterioles while simultaneously increasing UCP2 expression and nitric oxide (NO) production in the heart of ApoE KO-EX mice. Routine exercise alleviates endothelial dysfunction in atherosclerotic coronary arterioles in an eNOS, UCP2, and ER stress signaling specific manner, and resulting in reduced TXNIP/NLRP3 inflammasome activity and oxidative stress.


Assuntos
Aterosclerose/metabolismo , Aterosclerose/terapia , Vasos Coronários/metabolismo , Estresse do Retículo Endoplasmático , Terapia por Exercício/métodos , Condicionamento Físico Animal/métodos , Placa Aterosclerótica/metabolismo , Placa Aterosclerótica/terapia , Proteína Desacopladora 2/deficiência , Acetilcolina/farmacologia , Animais , Arteríolas/efeitos dos fármacos , Arteríolas/metabolismo , Arteríolas/fisiopatologia , Aterosclerose/genética , Modelos Animais de Doenças , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Estresse do Retículo Endoplasmático/genética , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/metabolismo , Teste de Esforço , Iridoides/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout para ApoE , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/genética , Placa Aterosclerótica/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Proteína Desacopladora 2/antagonistas & inibidores , Vasodilatação/efeitos dos fármacos , Vasodilatação/genética
4.
Metab Brain Dis ; 36(8): 2263-2271, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34003412

RESUMO

Vascular endothelial growth factor (VEGF) regulates angio/neurogenesis and also tightly links to the pathogenesis of Alzheimer's disease (AD). Although exercise has a beneficial effect on neurovascular function and cognitive function, the direct effect of exercise on VEGF-related signaling and cognitive deficit in AD is incompletely understood. Therefore, the purpose of this study was to investigate the protective effect of exercise on angiostatin/VEGF cascade and cognitive function in AD model rats. Wistar male rats were randomly divided into five groups: control (CON), injection of DMSO (Sham-CON), CON-exercise (sham-EX), intrahippocampal injection of Aß (Aß), and Aß-exercise (Aß-EX). Rats in EX groups underwent treadmill exercise for 4 weeks, then the cognitive function was measured by the Morris Water Maze (MWM) test. mRNA levels of hypoxia-induced factor-1α (HIF-1α), vascular endothelial growth factor (VEGF), vascular endothelial growth factor receptor 2 (VEGFR2), and angiostatin were determined in hippocampus by RT-PCR. We found that spatial learning and memory were impaired in Aß-injected rats, but exercise training improved it. Moreover, exercise training increased the reduced mRNA expression level of VEGF signaling, including HIF1α, VEGF, and VEGFR2 in the hippocampus from Aß-injected rats. Also, the mRNA expression level of angiostatin was elevated in the hippocampus from Aß-injected rats, and exercise training abrogated its expression. Our findings suggest that exercise training improves cognitive function in Aß-injected rats, possibly through enhancing VEGF signaling and reducing angiostatin.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Doença de Alzheimer/induzido quimicamente , Doença de Alzheimer/metabolismo , Doença de Alzheimer/terapia , Peptídeos beta-Amiloides/farmacologia , Angiostatinas/metabolismo , Angiostatinas/farmacologia , Animais , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/terapia , Modelos Animais de Doenças , Hipocampo/metabolismo , Masculino , Aprendizagem em Labirinto , Ratos , Ratos Wistar , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
5.
Med Sci Sports Exerc ; 52(12): 2538-2545, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32555019

RESUMO

PURPOSE: The nodlike receptor family pyrin domain containing 3 (NLRP3) inflammasome is a critical player in vascular pathology as it regulates caspase-1-mediated interleukin (IL)-1ß processing. Physical activity ameliorates obesity-induced inflammation and vascular dysfunction, but the mechanisms responsible for these positive changes are incompletely understood. Here, the protective effect of physical activity on the inflammasome-associated vascular dysfunction in obesity and its putative mechanisms were investigated. METHODS: Mice were fed a control low-fat diet (LFD) or a high-fat diet (HFD; 45% of calories from fat) and provided with running wheel access (LF-RUN or HF-RUN) or denied wheel access for our sedentary condition (LF-SED or HF-SED). The NLRP3 inflammasome-associated pathway, including NLRP3, caspase-1, and IL-1ß, in mice aorta was examined by RT-qPCR and FLICA and DAB staining. The protein expression of zonula occluden-1 (ZO-1), ZO-2, adiponectin (APN), and adiponectin receptor 1 (AdipoR1) in aortic endothelial cells was determined by immunofluorescence double staining. Intracellular reactive oxidative stress and nitric oxide (NO) production were monitored with fluorescence probes, dihydroethidium, and diaminofluorecein. RESULTS: HFD increased caspase-1 and IL-1ß at mRNA and protein levels in endothelial cells of the aorta, and this was attenuated by voluntary running. HFD decreased ZO-1 and ZO-2 expression and reduced APN and AdipoR1 signaling; these were restored by running. The elevated intracellular superoxide (O2) production observed in HF-SED was ameliorated in HF-RUN. Finally, HF-RUN improved NO production in the aorta compared with HF-SED. CONCLUSIONS: Our findings suggest that voluntary running ameliorates mechanisms associated with vascular dysfunction by suppressing NLRP3 inflammasome, improving NO production, and reducing oxidative stress. Such benefits of physical activity may be, at least in part, associated with APN-AdipoR1 signaling and tight junction protein expression.


Assuntos
Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Óxido Nítrico/metabolismo , Obesidade/metabolismo , Estresse Oxidativo , Condicionamento Físico Animal/fisiologia , Adiponectina/metabolismo , Animais , Aorta/metabolismo , Caspase 1/metabolismo , Dieta com Restrição de Gorduras , Dieta Hiperlipídica , Endotélio Vascular/metabolismo , Interleucina-1beta/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Atividade Motora , RNA Mensageiro/metabolismo , Receptores de Adiponectina/metabolismo , Superóxidos/metabolismo , Proteína da Zônula de Oclusão-1/metabolismo , Proteína da Zônula de Oclusão-2/metabolismo
6.
Am J Physiol Heart Circ Physiol ; 318(6): H1559-H1569, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32383993

RESUMO

Cerebrovascular dysfunction is a critical risk factor for the pathogenesis of Alzheimer's disease (AD). The purinergic P2Y2 receptor and endoplasmic reticulum (ER) stress are tightly associated with vascular dysfunction and the pathogenesis of AD. However, the protective effects of exercise training on P2Y2 receptor- and ER stress-associated cerebrovascular dysfunction in AD are mostly unknown. Control (C57BL/6, CON) and AD (APP/PS1dE9, AD) mice underwent treadmill exercise training (EX). 2-MeS-ATP-induced dose-dependent vasoreactivity was determined by using a pressurized posterior cerebral artery (PCA) from 10-12-mo-old mice. Human brain microvascular endothelial cells (HBMECs) were exposed to laminar shear stress (LSS) at 20 dyn/cm2 for 30 min, 2 h, and 24 h. The expression of P2Y2 receptors, endothelial nitric oxide synthase (eNOS), and ER stress signaling were quantified by Western blot analysis. Notably, exercise converted ATP-induced vasoconstriction in the PCA from AD mice to vasodilation in AD+EX mice to a degree commensurate to the vascular reactivity observed in CON mice. Exercise reduced the expression of amyloid peptide precursor (APP) and increased the P2Y2 receptor and Akt/eNOS expression in AD mice brain. Mechanistically, LSS increased the expression of both P2Y2 receptor and eNOS protein in HBMECs, but these increases were blunted by a P2Y2 receptor antagonist in HBMECs. Exercise also reduced the expression of aberrant ER stress markers p-IRE1, p/t-eIF2α, and CHOP, as well as Bax/Bcl-2, in AD mice brain. Collectively, our results demonstrate for the first time that exercise mitigates cerebrovascular dysfunction in AD through modulating P2Y2 receptor- and ER stress-dependent endothelial dysfunction.NEW & NOTEWORTHY A limited study has investigated whether exercise training can improve cerebrovascular function in Alzheimer's disease. The novel findings of the study are that exercise training improves cerebrovascular dysfunction through enhancing P2Y2 receptor-mediated eNOS signaling and reducing ER stress-associated pathways in AD. These data suggest that exercise training, which regulates P2Y2 receptor and ER stress in AD brain, is a potential therapeutic strategy for Alzheimer's disease.


Assuntos
Doença de Alzheimer/metabolismo , Circulação Cerebrovascular/fisiologia , Estresse do Retículo Endoplasmático/fisiologia , Condicionamento Físico Animal/fisiologia , Receptores Purinérgicos P2Y2/metabolismo , Doença de Alzheimer/fisiopatologia , Animais , Encéfalo/metabolismo , Encéfalo/fisiopatologia , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Endotélio Vascular/metabolismo , Endotélio Vascular/fisiopatologia , Camundongos , Óxido Nítrico Sintase Tipo III/metabolismo , Artéria Cerebral Posterior/metabolismo , Artéria Cerebral Posterior/fisiopatologia , Proteínas Proto-Oncogênicas c-akt/metabolismo
7.
Physiol Rep ; 6(12): e13738, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29932503

RESUMO

Activation of the nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome mediates the release of pro-inflammatory cytokine interleukin (IL)-1ß and thereby plays a pivotal role in the inflammatory response in vascular pathology. An active lifestyle has beneficial effects on inflammation-associated vascular dysfunction in obesity. However, it remains unclear how physical activity regulates NLRP3 inflammasome-mediated vascular dysfunction in obesity. Therefore, we explored the protective effect of physical activity on NLRP3 inflammasome-associated vascular dysfunction in mouse hearts, and the potential underlying mechanisms. C57BL/6J male mice were randomly divided into four groups: (1) control low-fat diet (LF-SED), (2) LF diet with free access to a voluntary running wheel (LF-RUN), (3) high-fat diet (HF-SED; 45% of calories from fat), and (4) HF-RUN. We examined NLRP3 inflammasome-related signaling pathways, nitric oxide (NO) signaling, and oxidative stress in coronary arterioles to test effects of HFD and physical activity. Voluntary running reduced NLRP3 inflammasome and its downstream effects, caspase-1 and IL-1ß in coronary arteriole endothelium of obese mice in immunofluorescence staining. HF-RUN attenuated HFD-dependent endothelial NO synthase (eNOS) reduction and thus increased NO production compared to HF-SED. HFD elevated intracellular superoxide production in coronary arterioles while voluntary running ameliorated oxidative stress. Our findings provide the first evidence that voluntary running attenuates endothelial NLRP3 inflammasome activation in coronary arterioles of HFD feeding mice. Results further suggest that voluntary running improves obesity-induced vascular dysfunction by preserved NO bioavailability via restored expression of eNOS and reduced oxidative stress.


Assuntos
Doença da Artéria Coronariana/etiologia , Vasos Coronários/fisiopatologia , Inflamassomos/fisiologia , Atividade Motora/fisiologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/fisiologia , Obesidade/complicações , Animais , Arteríolas/fisiopatologia , Doença da Artéria Coronariana/fisiopatologia , Dieta com Restrição de Gorduras , Dieta Hiperlipídica , Masculino , Camundongos Endogâmicos C57BL , Camundongos Obesos , Óxido Nítrico/fisiologia , Obesidade/fisiopatologia , Estresse Oxidativo/fisiologia , Transdução de Sinais/fisiologia
8.
Sci Rep ; 8(1): 7938, 2018 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-29784903

RESUMO

Endoplasmic reticulum (ER) stress is closely associated with atherosclerosis, but the effects of exercise on ER stress-mediated endothelial dysfunction in atherosclerosis is not yet fully understood. We assessed endothelium-dependent vasodilation in isolated mesenteric arteries from wild type (WT), WT with exercise (WT-EX), ApoE knockout (ApoE KO), and ApoE KO mice with exercise (ApoE KO-EX). Vasodilation to acetylcholine (ACh) was elicited in the presence of inhibitors of ER stress, eNOS, caspase-1, and UCP-2 (Tudca, L-NAME, AC-YVARD-cmk, and Genipin, respectively) and the ER stress inducer (Tunicamycin). Immunofluorescence was used to visualize the expression of CHOP, as an indicator of ER stress, in superior mesenteric arteries (SMA). Dilation to ACh was attenuated in ApoE KO but was improved in ApoE KO-EX. Incubation of Tudca and AC-YVARD-cmk improved ACh-induced vasodilation in ApoE KO. L-NAME, tunicamycin, and Genipin attenuated vasodilation in WT, WT-EX and ApoE KO-EX, but not in ApoE KO. Exercise training reversed the increase in CHOP expression in the endothelium of SMA of ApoE KO mice. We conclude that ER stress plays a significant role in endothelial dysfunction of resistance arteries in atherosclerosis and that exercise attenuates ER stress and regulates its critical downstream signaling pathways including eNOS, UCP-2 and caspase-1.


Assuntos
Apolipoproteínas E/fisiologia , Aterosclerose/complicações , Estresse do Retículo Endoplasmático , Endotélio Vascular/patologia , Artérias Mesentéricas/patologia , Condicionamento Físico Animal , Doenças Vasculares/prevenção & controle , Animais , Inflamação/etiologia , Inflamação/patologia , Inflamação/prevenção & controle , Masculino , Camundongos , Camundongos Knockout , Estresse Oxidativo , Doenças Vasculares/etiologia , Doenças Vasculares/patologia , Vasodilatação
9.
PLoS One ; 12(11): e0187189, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29095915

RESUMO

OBJECTIVES: Inflammatory cytokines, such as tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6), are individually considered as important contributors to endothelial dysfunction in obesity and type 2 diabetes (T2D). However, their interactions in coronary arteriole endothelial dysfunction are uncertain. Therefore, this study aimed to determine the effects of TNF-α and IL-6 interactions on coronary endothelial dysfunction in experimental T2D. METHODS: The studies used wild type (WT), diabetic mice (db/db), db/db null for TNF (dbTNF-/dbTNF-), and db/db mice treated with neutralizing antibody to IL-6 (anti-IL-6). Endothelium-dependent (acetylcholine [ACh], or luminal flow-induced shear stress) and endothelium-independent (sodium nitroprusside [SNP]) vasodilation of isolated and pressurized coronary arterioles were determined. Quantitative PCR, Western blot, and immunofluorescence staining were utilized for mechanistic studies. RESULTS: Relative to WT, arteriolar dilation to both ACh and flow was attenuated in db/db mice and dbTNF-/dbTNF-. Treatment of dbTNF-/dbTNF- and db/db mice with anti-IL-6 improved arteriolar dilation compared to db/db mice. Immunofluorescence staining illustrated localization of IL-6 within the endothelial cells of coronary arterioles. In db/db mice, mRNA and protein expression of IL-6 and superoxide (O2-) production were higher, but reduced by anti-IL-6 treatment. Also, in db/db mice, mRNA and protein expression of TNF-α suppressed by the anti-IL-6 treatment and the reduced expression of mRNA and protein expression of IL-6 by the genetic deletion of TNF-α both supported a reciprocal regulation between TNF-α and IL-6. Superoxide dismutase 2 (SOD2) expression and phosphorylation of eNOS (p-eNOS/eNOS) were lower in db/db mice coronary arterioles and were restored in db/db+Anti-IL-6 and dbTNF-/dbTNF- mice. CONCLUSION: The interactions between TNF-α and IL-6 exacerbate oxidative stress and reduce phosphorylation of eNOS, thereby contributing to coronary endothelial dysfunction in T2D mice.


Assuntos
Diabetes Mellitus Tipo 2/fisiopatologia , Endotélio Vascular/fisiopatologia , Coração/fisiopatologia , Interleucina-6/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Animais , Masculino , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...