Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 206
Filtrar
1.
Sci Robot ; 9(89): eadi9641, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38657088

RESUMO

Autonomous wheeled-legged robots have the potential to transform logistics systems, improving operational efficiency and adaptability in urban environments. Navigating urban environments, however, poses unique challenges for robots, necessitating innovative solutions for locomotion and navigation. These challenges include the need for adaptive locomotion across varied terrains and the ability to navigate efficiently around complex dynamic obstacles. This work introduces a fully integrated system comprising adaptive locomotion control, mobility-aware local navigation planning, and large-scale path planning within the city. Using model-free reinforcement learning (RL) techniques and privileged learning, we developed a versatile locomotion controller. This controller achieves efficient and robust locomotion over various rough terrains, facilitated by smooth transitions between walking and driving modes. It is tightly integrated with a learned navigation controller through a hierarchical RL framework, enabling effective navigation through challenging terrain and various obstacles at high speed. Our controllers are integrated into a large-scale urban navigation system and validated by autonomous, kilometer-scale navigation missions conducted in Zurich, Switzerland, and Seville, Spain. These missions demonstrate the system's robustness and adaptability, underscoring the importance of integrated control systems in achieving seamless navigation in complex environments. Our findings support the feasibility of wheeled-legged robots and hierarchical RL for autonomous navigation, with implications for last-mile delivery and beyond.

2.
Biomedicines ; 11(11)2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-38002099

RESUMO

With the advances in chemotherapy and immunotherapy, a small subset of patients may be eligible for conversion surgery after achieving tumor regression with chemotherapy. This is a retrospective cohort study of 118 patients with stage IV gastric cancer who received palliative chemotherapy and conversion surgery with a negative resection margin at Samsung Medical Center. Baseline features included comorbidities, body mass index (BMI), carcinoembryonic antigen (CEA) level, primary tumor size, biopsy histology, distant metastatic sites, and molecular markers-HER2, MSI/MMR, PD-L1, and EBV. Post-chemotherapy features included BMI, CEA level, chemotherapy regimen, objective response to chemotherapy, and number of preoperative chemotherapy cycles. Post-operational features included tumor size, histologic differentiation and Lauren's classification, pathologic tumor and nodal stages, invasion of lymphatics/vessels/nerves, peritoneal cytology, and the receipt of postoperative chemotherapy. Of 118 patients, 60 patients received total gastrectomy and 58 patients received subtotal gastrectomy. In all, 21 patients achieved a pathologic complete response, and 97 patients achieved downstaging to yp stage I, II, or III. Before conversion surgery, patients received first-line capecitabine/oxaliplatin (62%), HER2 inhibitors combined with chemotherapy (18%), immune checkpoint inhibitors (15%), and inhibitors of MET or VEGFR2 (5%). In the multivariable analysis, BMI at the time of diagnosis, either HER2 positive, high MSI, or deficient MMR, and the use of targeted agents were significant prognostic factors. Conversion surgery could be considered in patients with stage IV gastric cancer regardless of the initial disease burden. BMI and molecular markers are important prognostic factors that can be used to select candidates.

3.
J Chem Phys ; 159(18)2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37937933

RESUMO

We present a method for calculating first-order response properties in phaseless auxiliary field quantum Monte Carlo by applying automatic differentiation (AD). Biases and statistical efficiency of the resulting estimators are discussed. Our approach demonstrates that AD enables the calculation of reduced density matrices with the same computational cost scaling per sample as energy calculations, accompanied by a cost prefactor of less than four in our numerical calculations. We investigate the role of self-consistency and trial orbital choice in property calculations. We find that orbitals obtained using density functional theory perform well for the dipole moments of selected molecules compared to those optimized self-consistently.

4.
J Korean Med Sci ; 38(38): e300, 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37750371

RESUMO

BACKGROUND: The purpose of this study was to evaluate the effect of vanishing twin (VT) on maternal serum marker concentrations and nuchal translucency (NT). METHODS: This is a secondary analysis of a multicenter prospective cohort study in 12 institutions. Serum concentrations of pregnancy-associated plasma protein-A in the first trimester and alpha-fetoprotein (AFP), total human chorionic gonadotrophin, unconjugated estriol, and inhibin A in the second trimester were measured, and NT was measured between 10 and 14 weeks of gestation. RESULTS: Among 6,793 pregnant women, 5,381 women were measured for serum markers in the first or second trimester, including 65 cases in the VT group and 5,316 cases in the normal singleton group. The cases in the VT group had a higher median multiple of the median value of AFP and inhibin A than the normal singleton group. The values of other serum markers and NT were not different between the two groups. After the permutation test with adjustment, AFP and inhibin A remained significant differences. The frequency of abnormally increased AFP was also higher in the VT group than in the normal singleton group. CONCLUSION: VT can be considered as an adjustment factor for risk assessment in the second-trimester serum screening test.


Assuntos
Medição da Translucência Nucal , alfa-Fetoproteínas , Gravidez , Humanos , Feminino , Segundo Trimestre da Gravidez , Estudos Prospectivos , Família
5.
J Chem Theory Comput ; 19(17): 5773-5784, 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37586065

RESUMO

Hybrid density functional theory (DFT) remains intractable for large periodic systems due to the demanding computational cost of exact exchange. We apply the tensor hypercontraction (THC) (or interpolative separable density fitting) approximation to periodic hybrid DFT calculations with Gaussian-type orbitals using the Gaussian plane wave approach. This is done to lower the computational scaling with respect to the number of basis functions (N) and k-points (Nk) at a fixed system size. Additionally, we propose an algorithm to fit only occupied orbital products via THC (i.e., a set of points, NISDF) to further reduce computation time and memory usage. This algorithm has linear scaling cost with k-points, no explicit dependence of NISDF on basis set size, and overall cubic scaling with unit cell size. Significant speedups and reduced memory usage may be obtained for moderately sized k-point meshes, with additional gains for large k-point meshes. Adequate accuracy can be obtained using THC-oo-K for self-consistent calculations. We perform illustrative hybrid density function theory calculations on the benzene crystal in the basis set and thermodynamic limits to highlight the utility of this algorithm.

6.
Am J Reprod Immunol ; 90(2): e13744, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37491916

RESUMO

PROBLEM: Direct interactions between macrophages and lymphatic vessels have been shown previously. In pre-eclampsia (PE), macrophages are dominantly polarized into a proinflammatory M1 phenotype and lymphangiogenesis is defective in the decidua. Here, we investigated whether decidual lymphatic endothelial cells (dLECs) affect macrophage polarization in PE. METHOD OF STUDY: THP-1 macrophages were cocultured with dLECs or cultured in the conditioned medium (CM) of dLECs. Macrophage polarization was measured using flow cytometry. Granulocyte-macrophage colony-stimulating factor (GM-CSF) expression in dLECs was measured using qRT-PCR and ELISA. The activation of nuclear translocation of nuclear factor-κ (NF-κB), an upstream signaling molecule of GM-CSF, was assessed by immunocytochemical localization of p65. Through GM-CSF knockdown and NF-κB inhibition in dLEC, we evaluated whether the GM-CSF/NF-κB pathway of PE dLEC affects decidual macrophage polarization. RESULTS: The ratio of inflammatory M1 macrophages with HLA-DR+ /CD80+ markers significantly increased following coculturing with PE dLECs or culturing in PE dLEC CM, indicating that the PE dLEC-derived soluble factor acts in a paracrine manner. GM-CSF expression was significantly upregulated in PE dLECs. Recombinant human GM-CSF induced macrophage polarization toward an M1-like phenotype, whereas its knockdown in PE dLECs suppressed it, suggesting PE dLECs induce M1 macrophage polarization by secreting GM-CSF. The NF-κB p65 significantly increased in PE dLECs compared to the control, and pretreatment with an NF-κB inhibitor significantly suppressed GM-CSF production from PE dLECs. CONCLUSIONS: In PE, dLECs expressing high levels of GM-CSF via the NF-κB-dependent pathway play a role in inducing decidual M1 macrophage polarization.


Assuntos
NF-kappa B , Pré-Eclâmpsia , Gravidez , Feminino , Humanos , NF-kappa B/metabolismo , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Pré-Eclâmpsia/metabolismo , Células Endoteliais/metabolismo , Macrófagos/metabolismo , Fator Estimulador de Colônias de Macrófagos
7.
Nat Commun ; 14(1): 4058, 2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37429883

RESUMO

Quantum algorithms for simulating electronic ground states are slower than popular classical mean-field algorithms such as Hartree-Fock and density functional theory but offer higher accuracy. Accordingly, quantum computers have been predominantly regarded as competitors to only the most accurate and costly classical methods for treating electron correlation. However, here we tighten bounds showing that certain first-quantized quantum algorithms enable exact time evolution of electronic systems with exponentially less space and polynomially fewer operations in basis set size than conventional real-time time-dependent Hartree-Fock and density functional theory. Although the need to sample observables in the quantum algorithm reduces the speedup, we show that one can estimate all elements of the k-particle reduced density matrix with a number of samples scaling only polylogarithmically in basis set size. We also introduce a more efficient quantum algorithm for first-quantized mean-field state preparation that is likely cheaper than the cost of time evolution. We conclude that quantum speedup is most pronounced for finite-temperature simulations and suggest several practically important electron dynamics problems with potential quantum advantage.

8.
Nat Commun ; 14(1): 1952, 2023 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-37029105

RESUMO

Due to intense interest in the potential applications of quantum computing, it is critical to understand the basis for potential exponential quantum advantage in quantum chemistry. Here we gather the evidence for this case in the most common task in quantum chemistry, namely, ground-state energy estimation, for generic chemical problems where heuristic quantum state preparation might be assumed to be efficient. The availability of exponential quantum advantage then centers on whether features of the physical problem that enable efficient heuristic quantum state preparation also enable efficient solution by classical heuristics. Through numerical studies of quantum state preparation and empirical complexity analysis (including the error scaling) of classical heuristics, in both ab initio and model Hamiltonian settings, we conclude that evidence for such an exponential advantage across chemical space has yet to be found. While quantum computers may still prove useful for ground-state quantum chemistry through polynomial speedups, it may be prudent to assume exponential speedups are not generically available for this problem.

9.
J Chem Phys ; 158(16)2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37114707

RESUMO

We developed and implemented a method-independent, fully numerical, finite difference approach to calculating nuclear magnetic resonance shieldings, using gauge-including atomic orbitals. The resulting capability can be used to explore non-standard methods, given only the energy as a function of finite-applied magnetic fields and nuclear spins. For example, standard second-order Møller-Plesset theory (MP2) has well-known efficacy for 1H and 13C shieldings and known limitations for other nuclei such as 15N and 17O. It is, therefore, interesting to seek methods that offer good accuracy for 15N and 17O shieldings without greatly increased compute costs, as well as exploring whether such methods can further improve 1H and 13C shieldings. Using a small molecule test set of 28 species, we assessed two alternatives: κ regularized MP2 (κ-MP2), which provides energy-dependent damping of large amplitudes, and MP2.X, which includes a variable fraction, X, of third-order correlation (MP3). The aug-cc-pVTZ basis was used, and coupled cluster with singles and doubles and perturbative triples [CCSD(T)] results were taken as reference values. Our κ-MP2 results reveal significant improvements over MP2 for 13C and 15N, with the optimal κ value being element-specific. κ-MP2 with κ = 2 offers a 30% rms error reduction over MP2. For 15N, κ-MP2 with κ = 1.1 provides a 90% error reduction vs MP2 and a 60% error reduction vs CCSD. On the other hand, MP2.X with a scaling factor of 0.6 outperformed CCSD for all heavy nuclei. These results can be understood as providing renormalization of doubles amplitudes to partially account for neglected triple and higher substitutions and offer promising opportunities for future applications.

10.
Nano Lett ; 23(9): 4082-4089, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37103998

RESUMO

We develop a microscopic theory for the multimode polariton dispersion in materials coupled to cavity radiation modes. Starting from a microscopic light-matter Hamiltonian, we devise a general strategy for obtaining simple matrix models of polariton dispersion curves based on the structure and spatial location of multilayered 2D materials inside the optical cavity. Our theory exposes the connections between seemingly distinct models that have been employed in the literature and resolves an ambiguity that has arisen concerning the experimental description of the polaritonic band structure. We demonstrate the applicability of our theoretical formalism by fabricating various geometries of multilayered perovskite materials coupled to cavities and demonstrating that our theoretical predictions agree with the experimental results presented here.

11.
J Chem Theory Comput ; 19(14): 4510-4519, 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-36730728

RESUMO

Obtaining the atomistic structure and dynamics of disordered condensed-phase systems from first-principles remains one of the forefront challenges of chemical theory. Here we exploit recent advances in periodic electronic structure and provide a data-efficient approach to obtain machine-learned condensed-phase potential energy surfaces using AFQMC, CCSD, and CCSD(T) from a very small number (≤200) of energies by leveraging a transfer learning scheme starting from lower-tier electronic structure methods. We demonstrate the effectiveness of this approach for liquid water by performing both classical and path integral molecular dynamics simulations on these machine-learned potential energy surfaces. By doing this, we uncover the interplay of dynamical electron correlation and nuclear quantum effects across the entire liquid range of water while providing a general strategy for efficiently utilizing periodic correlated electronic structure methods to explore disordered condensed-phase systems.

12.
Neural Netw ; 161: 682-692, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36841039

RESUMO

Most unsupervised domain adaptation (UDA) methods assume that labeled source images are available during model adaptation. However, this assumption is often infeasible owing to confidentiality issues or memory constraints on mobile devices. Some recently developed approaches do not require source images during adaptation, but they show limited performance on perturbed images. To address these problems, we propose a novel source-free UDA method that uses only a pre-trained source model and unlabeled target images. Our method captures the aleatoric uncertainty by incorporating data augmentation and trains the feature generator with two consistency objectives. The feature generator is encouraged to learn consistent visual features away from the decision boundaries of the head classifier. Thus, the adapted model becomes more robust to image perturbations. Inspired by self-supervised learning, our method promotes inter-space alignment between the prediction space and the feature space while incorporating intra-space consistency within the feature space to reduce the domain gap between the source and target domains. We also consider epistemic uncertainty to boost the model adaptation performance. Extensive experiments on popular UDA benchmark datasets demonstrate that the proposed source-free method is comparable or even superior to vanilla UDA methods. Moreover, the adapted models show more robust results when input images are perturbed.


Assuntos
Benchmarking , Incerteza
13.
J Chem Theory Comput ; 19(1): 109-121, 2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36503227

RESUMO

We report the development of a python-based auxiliary-field quantum Monte Carlo (AFQMC) program, ipie, with preliminary timing benchmarks and new AFQMC results on the isomerization of [Cu2O2]2+. We demonstrate how implementations for both central and graphical processing units (CPUs and GPUs) are achieved in ipie. We show an interface of ipie with PySCF as well as a straightforward template for adding new estimators to ipie. Our timing benchmarks against other C++ codes, QMCPACK and Dice, suggest that ipie is faster or similarly performing for all chemical systems considered on both CPUs and GPUs. Our results on [Cu2O2]2+ using selected configuration interaction trials show that it is possible to converge the ph-AFQMC isomerization energy between bis(µ-oxo) and µ-η2:η2 peroxo configurations to the exact known results for small basis sets with 105-106 determinants. We also report the isomerization energy with a quadruple-zeta basis set with an estimated error less than a kcal/mol, which involved 52 electrons and 290 orbitals with 106 determinants in the trial wave function. These results highlight the utility of ph-AFQMC and ipie for systems with modest strong correlation and large-scale dynamic correlation.


Assuntos
Elétrons , Método de Monte Carlo
14.
Korean J Pain ; 36(1): 1-3, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36581596
15.
J Chem Theory Comput ; 18(12): 7336-7349, 2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36459992

RESUMO

In this work, we developed and showcased the occ-RI-K algorithm to compute the exact exchange contribution in density functional calculations of solids near the basis set limit. Within the Gaussian planewave (GPW) density fitting, our algorithm achieves a 1-2 orders of magnitude speedup compared to conventional GPW algorithms. Since our algorithm is well suited for simulations with large basis sets, we applied it to 12 hybrid density functionals with pseudopotentials and a large uncontracted basis set to assess their performance on band gaps of 25 simple solids near the basis set limit. The largest calculation performed in this work involves 16 electrons and 350 basis functions in the unit cell utilizing a 6 × 6 × 6 k-mesh. With 20-27% exact exchange, global hybrid functionals (B3LYP, PBE0, revPBE0, B97-3, SCAN0) perform similarly with a root-mean-square deviation (RMSD) of 0.61-0.77 eV, while other global hybrid functionals such as M06-2X (2.02 eV) and MN15 (1.05 eV) show higher RMSD due to their increased fraction of exact exchange. A short-range hybrid functional, HSE achieves a similar RMSD (0.76 eV) but shows a notable underestimation of band gaps due to the complete lack of long-range exchange. We found that two combinatorially optimized range-separated hybrid functionals, ωB97X-rV (3.94 eV) and ωB97M-rV (3.40 eV), and the two other range-separated hybrid functionals, CAM-B3LYP (2.41 eV) and CAM-QTP01 (4.16 eV), significantly overestimate the band gap because of their high fraction of long-range exact exchange. Given the failure of ωB97X-rV and ωB97M-rV, we have yet to find a density functional that offers consistent performance for both molecules and solids. Our algorithm development and density functional assessment will serve as a stepping stone toward developing more accurate hybrid functionals and applying them to practical applications.

16.
J Matern Fetal Neonatal Med ; 35(26): 10514-10529, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36229038

RESUMO

OBJECTIVE: To develop a noninvasive scoring system to identify patients at high risk for intra-amniotic infection and/or inflammation, which would reduce the need for amniocentesis. METHODS: This prospective cohort study comprised patients admitted with preterm labor and intact membranes (20-34 weeks of gestation) who underwent a transabdominal amniocentesis and for whom concentrations of quantitative cervical fetal fibronectin and of maternal serum C-reactive protein (CRP) were determined. Intra-amniotic infection was defined as a positive amniotic fluid culture for microorganisms. Intra-amniotic inflammation was defined as an amniotic fluid matrix metalloproteinase-8 concentration >23 ng/mL. Multivariate logistic regression analysis was performed to identify intra-amniotic infection/inflammtion with noninvasive parameters that had a significant relationship with univariate analysis. With four parameters identified by multivariate analysis, we generated a noninvasive risk scoring system. RESULTS: Of the study population consisting of 138 singleton pregnant women, (1) the overall rate of intra-amniotic infection/inflammation was 28.3% (39/138); (2) four parameters were used to develop a noninvasive risk scoring system [i.e. cervical fetal fibronectin concentration (score 0-2), maternal serum CRP concentration (score 0-2), cervical dilatation (score 0-2), and gestational age at presentation (score 0-1)]; the total score ranges from 0 to 7; 3) the area under the curve of the risk score was 0.96 (95% confidence interval (CI), 0.92-0.99), significantly higher than that of each predictor in the identification of intra-amniotic infection/inflammation (p < .001, for all); 4) the risk score with a cutoff of 4 had a sensitivity of 94.9% (37/39), a specificity of 90.9% (90/99), a positive predictive value of 80.4% (37/46), a negative predictive value of 97.8% (90/92), a positive likelihood ratio of 10.4 (95% CI, 5.6-19.5), and a negative likelihood ratio of 0.06 (95% CI, 0.15-0.22) in the identification of intra-amniotic infection/inflammation. CONCLUSIONS: (1) The combination of four parameters (concentrations of cervical fetal fibronectin and maternal serum CRP, cervical dilatation, and gestational age) was independently associated with intra-amniotic infection and/or inflammation; and (2) the risk scoring system comprised of the combination of 4 noninvasive parameters was sensitive and specific to identify the patients at risk for intra-amniotic infection and/or inflammation.


Assuntos
Corioamnionite , Trabalho de Parto Prematuro , Recém-Nascido , Humanos , Gravidez , Feminino , Corioamnionite/diagnóstico , Corioamnionite/metabolismo , Estudos Prospectivos , Fibronectinas/metabolismo , Trabalho de Parto Prematuro/diagnóstico , Trabalho de Parto Prematuro/metabolismo , Inflamação/diagnóstico , Inflamação/metabolismo , Líquido Amniótico/metabolismo , Amniocentese , Proteína C-Reativa/metabolismo
17.
J Chem Theory Comput ; 18(12): 7024-7042, 2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36255074

RESUMO

In this work, we present an overview of the phaseless auxiliary-field quantum Monte Carlo (ph-AFQMC) approach from a computational quantum chemistry perspective and present a numerical assessment of its performance on main group chemistry and bond-breaking problems with a total of 1004 relative energies. While our benchmark study is somewhat limited, we make recommendations for the use of ph-AFQMC for general main-group chemistry applications. For systems where single determinant wave functions are qualitatively accurate, we expect the accuracy of ph-AFQMC in conjunction with a single-determinant trial wave function to be between that of coupled-cluster with singles and doubles (CCSD) and CCSD with perturbative triples (CCSD(T)). For these applications, ph-AFQMC should be a method of choice when canonical CCSD(T) is too expensive to run. For systems where multireference (MR) wave functions are needed for qualitative accuracy, ph-AFQMC is far more accurate than MR perturbation theory methods and competitive with MR configuration interaction (MRCI) methods. Due to the computational efficiency of ph-AFQMC compared to MRCI, we recommended ph-AFQMC as a method of choice for handling dynamic correlation in MR problems. We conclude with a discussion of important directions for future development of the ph-AFQMC approach.

18.
J Chem Theory Comput ; 18(9): 5382-5392, 2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-36050889

RESUMO

Optimizing orbitals in the presence of electron correlation, as in orbital-optimized second-order Møller-Plesset perturbation theory (OOMP2), can remove artifacts associated with mean-field orbitals such as spin contamination and artificial symmetry-breaking. However, OOMP2 is known to suffer from divergent correlation energies in regimes of small orbital energy gaps. To address this issue, several approaches to amplitude regularization have been explored, with those featuring energy-gap-dependent regularizers appearing to be most transferable and physically justifiable. For instance, κ-OOMP2 was shown to address the energy divergence issue in, for example, bond-breaking processes while offering a significant improvement in accuracy for the W4-11 thermochemistry data set, and a parameter of κ = 1.45 was recommended. A more recent investigation of regularized MP2 with Hartree-Fock orbitals revealed that stronger regularization (i.e., smaller values of κ) than what had previously been recommended for κ-OOMP2 may offer huge improvements in certain cases such as noncovalent interactions while retaining a high level of accuracy for main-group thermochemistry data sets. In this study, we investigate the transferability of those findings to κ-OOMP2 and assess the implications of stronger regularization on the ability of κ-OOMP2 to diagnose strong static correlation. We found similar results using κ-OOMP2 for several main-group thermochemistry, barrier height, and noncovalent interaction data sets including both closed shell and open shell species. However, stronger regularization yielded substantially higher accuracy for open-shell transition-metal (TM) thermochemistry and is necessary to provide qualitatively correct spin symmetry breaking behavior for several large and electrochemically relevant TM systems. We therefore find a single κ value insufficient to treat all systems using κ-OOMP2.

19.
J Chem Phys ; 157(9): 094104, 2022 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-36075733

RESUMO

In this paper, we study the nuclear gradients of heat bath configuration interaction self-consistent field (HCISCF) wave functions and use them to optimize molecular geometries for various molecules. We show that HCISCF nuclear gradients are fairly insensitive to the size of the "selected" variational space, which allows us to reduce the computational cost without introducing significant errors. The ability of the HCISCF to treat larger active spaces combined with the flexibility for users to control the computational cost makes the method very attractive for studying strongly correlated systems, which require a larger active space than possible with a complete active space self-consistent field. Finally, we study the realistic catalyst, Fe(PDI), and highlight some of the challenges this system poses for density functional theory (DFT). We demonstrate how HCISCF can clarify the energetic stability of geometries obtained from DFT when the results are strongly dependent on the functional. We also use the HCISCF gradients to optimize geometries for this species and study the adiabatic singlet-triplet gap. During geometry optimization, we find that multiple near-degenerate local minima exist on the triplet potential energy surface.

20.
Proc Natl Acad Sci U S A ; 119(38): e2203533119, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-36095200

RESUMO

An accurate assessment of how quantum computers can be used for chemical simulation, especially their potential computational advantages, provides important context on how to deploy these future devices. To perform this assessment reliably, quantum resource estimates must be coupled with classical computations attempting to answer relevant chemical questions and to define the classical algorithms simulation frontier. Herein, we explore the quantum computation and classical computation resources required to assess the electronic structure of cytochrome P450 enzymes (CYPs) and thus define a classical-quantum advantage boundary. This is accomplished by analyzing the convergence of density matrix renormalization group plus n-electron valence state perturbation theory (DMRG+NEVPT2) and coupled-cluster singles doubles with noniterative triples [CCSD(T)] calculations for spin gaps in models of the CYP catalytic cycle that indicate multireference character. The quantum resources required to perform phase estimation using qubitized quantum walks are calculated for the same systems. Compilation into the surface code provides runtime estimates to compare directly to DMRG runtimes and to evaluate potential quantum advantage. Both classical and quantum resource estimates suggest that simulation of CYP models at scales large enough to balance dynamic and multiconfigurational electron correlation has the potential to be a quantum advantage problem and emphasizes the important interplay between classical computations and quantum algorithms development for chemical simulation.


Assuntos
Simulação por Computador , Sistema Enzimático do Citocromo P-450 , Elétrons , Modelos Químicos , Computadores , Sistema Enzimático do Citocromo P-450/química , Teoria Quântica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...